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• The plan of observing GPs with high uncertainty over a horizon is executed by the 
Science Simulator.

• The soil moisture is retrieved using radiometer retrieval procedures.

• The observed soil moisture are then fused with the predictions from previous run.
• The next day predictions are based on both SMAP L4 and predictions assimilated 

with the satellite observed values. 

(Jan 4th, 2020)

(Jan 5th, 2020)
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are from the 
convLSTM deep 
learning model
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global GPs for 24-
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Soil moisture forecast model
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ConvLSTM model
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𝑖𝑡 = 𝜎 𝑊𝑥𝑖 ∗ 𝒳𝑡 +𝑊ℎ𝑖 ∗ ℋ𝑡−1 +𝑊𝑐𝑖 ∘ 𝒞𝑡−1 + 𝑏𝑖
𝑓𝑡 = 𝜎 𝑊𝑥𝑓 ∗ 𝒳𝑡 +𝑊ℎ𝑓 ∗ ℋ𝑡−1 +𝑊𝑐𝑓 ∘ 𝒞𝑡−1 + 𝑏𝑓

𝒞𝑡 = 𝑓𝑡 ∘ 𝒞𝑡−1 + 𝑖𝑡 ∘ tanh 𝑊𝑥𝑐 ∗ 𝒳𝑡 +𝑊ℎ𝑐 ∗ ℋ𝑡−1 + 𝑏𝑐
𝑜𝑡 = 𝜎 𝑊𝑥𝑜 ∗ 𝒳𝑡 +𝑊ℎ𝑜 ∗ ℋ𝑡−1 +𝑊𝑐𝑜 ∘ 𝒞𝑡 + 𝑏𝑜

ℋ𝑡 = 𝑜𝑡 ∘ tanh(𝒞𝑡)

C: Memory cell; H: Final state cell
i: Input gate; o: output gate; f: forget gate

Soil Moisture: 
InputLayer

input (None, 3, 1624, 3856, 1 )

output (None, 3, 1624, 3856, 1 )

ConvLSTM2D input (None, 3, 1624, 3856, 1 )

output (None, 3, 1624, 3856, 2)

Precipitation: 
InputLayer

input (None, 3, 1624, 3856, 1 )

output (None, 3, 1624, 3856, 1 )

ConvLSTM2D input (None, 3, 1624, 3856, 1 )

output (None, 3, 1624, 3856, 2)

Concatenate input (None, 3, 1624, 3856, 2), (None, 3, 1624, 3856, 2) 

output (None, 3, 1624, 3856, 4)

ConvLSTM2D input (None, 3, 1624, 3856, 4)

output (None, 3, 1624, 3856, 2)

Dropout input (None, 3, 1624, 3856, 2)

output (None, 3, 1624, 3856, 2)

Conv3D input (None, 3, 1624, 3856, 2)

output (None, 3, 1624, 3856, 1)



Tau-omega model
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1 – Reflectivity from Tau Omega model
2 – Dielectric constant from Fresnel equations(vertical polarization)
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Optical depth, 
𝜏 = 𝑏 × 𝑉𝑊𝐶

Transmissivity, 
𝛾 = exp −𝜏𝑠𝑒𝑐𝜃

Reflectivity1, 

𝑟 =
𝑇𝑠 1 − 𝜔 + 𝜔𝛾 − 𝑇𝐵
𝑇𝑠𝛾(𝛾 + 𝜔 − 𝜔𝛾)

Dielectric constant2, 

𝜀 =
sin2 𝜃

𝑐𝑜𝑠𝜃

1 + 𝑟 𝑐𝑜𝑠𝜃

1 + 𝑟 − 1 − 𝑟 𝑐𝑜𝑠𝜃

Mironov Model
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Single Channel Algorithm



Performance metrics
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RMSE: Root Mean Squared Error

𝑅𝑀𝑆𝐸 =
1

𝑛
෍(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)

2
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Uncertainty

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑅𝑀𝑆𝐸 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐵𝑖𝑎𝑠2



Results and analysis
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Run001 – Predicted Jan 4th ,2020 data assimilated with observed values

Uncertainty 1:30 4:30 7:30 10:30 13:30 16:30 19:30 22:30

Prediction before assimilation 0.0035 0.0129 0.0294 0.0441 0.0650 0.0941 0.1227 0.1522

Prediction after assimilation 0.0034 0.0124 0.0275 0.0402 0.0576 0.0822 0.1047 0.1265

% decrease 2.8596 3.8976 6.3482 8.7593 11.3255 12.6230 14.6393 16.8508

• Assimilation corresponds to replacing the predicted soil-moisture values at the observed grid-points by the Tau-
omega model estimated (“simulating observing of ground points”) soil-moisture values.

%𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =
𝐵𝑒𝑓𝑜𝑟𝑒 𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 − 𝐴𝑓𝑡𝑒𝑟 𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝐵𝑒𝑓𝑜𝑟𝑒 𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
× 100



Results and analysis
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Run002 – Different model runs of Jan 5th ,2020

S.NO Uncertainty 1:30 4:30 7:30 10:30 13:30 16:30 19:30 22:30

1 Model run (a) 0.0040 0.0134 0.0299 0.0446 0.0655 0.0946 0.1233 0.1527

2 Model run (b) 0.0033 0.0127 0.02922 0.0438 0.0648 0.0939 0.1225 0.1520

3 (b) + observations 0.0032 0.0122 0.0273 0.0400 0.0576 0.0822 0.1050 0.1271

4 % decrease (1&2) 19.0419 5.7619 2.5898 1.7396 1.1843 0.8205 0.6299 0.5084

5 % decrease (1&3) 21.2214 9.4448 8.8265 10.2877 12.1861 13.0965 14.8291 16.7724

Model run (a)
• This model run is driven entirely based on SMAP L4 data.
• No observations are used during this run.
Model run (b)
• This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with 

observed values.



Results and analysis
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Run003 – Different model runs of Jan 6th ,2020

Uncertainty 1:30 4:30 7:30 10:30 13:30 16:30 19:30 22:30

Model run (a) 0.0040 0.0134 0.0300 0.0446 0.0656 0.0946 0.1233 0.1527

Model run (b) 0.0032 0.0127 0.0292 0.0438 0.0648 0.0939 0.1225 0.1520

% decrease 19.3449 5.8651 2.6374 1.7718 1.2063 0.8358 0.6417 0.5179

Model run (a)
• This model run is driven entirely based on SMAP L4 data.
• No observations are used during this run.
Model run (b)
• This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with 

satellite observed values.
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Conclusion
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• This paper proposes a convLSTM model to predict soil moisture at high 
spatiotemporal resolution. This paper also deals with a science 
simulator using Tau-omega model that acts as tool of observing true 
soil moisture at ground points with high uncertainty. 

• The experiments show a 19% error reduction in the predictions with the 
assimilations. 

• Future work will be focused on improving this error reduction by 
exploring more data layers and other microwave remote sensing 
resources.
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