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Forecasting soil moisture using a deep learning model
Integrated with passive microwave retrieval
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The plan of observing GPs with high uncertainty over a horizon is executed by the
Science Simulator.

The soil moisture is retrieved using radiometer retrieval procedures.

The observed soil moisture are then fused with the predictions from previous run.

The next day predictions are based on both SMAP L4 and predictions assimilated
with the satellite observed values.
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Soil moisture forecast model
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ConvLSTM model

h
Soil Moisture: | input (None, 3, 1624, 3856, 1) Precipitation: | input (None, 3, 1624, 3856, 1) Ramm . 1 e
[ tL
MPUSYEr | output | (None, 3,1624,3856,1) | | "PUtAYT T oitput | (None, 3, 1624, 3856, 1) ] - tanh
& i i tanh l
ConvLSTM2D | input (None, 3, 1624, 3856, 1) ConvLSTM2D | input | (None, 3, 1624, 3856, 1) h 7 S - h
output | (None, 3, 1624, 3856, 2) output | (None, 3, 1624, 3856, 2) *
¢ . Layer Componenteise Copy Concatenste
Concatenate | input (None, 3, 1624, 3856, 2), (None, 3, 1624, 3856, 2) Legend. 4 .
£l
output (None, 3, 1624, 3856, 4)
ConvLSTM2D input (None, 3, 1624, 3856, 4) ip = oWy * X¢ + Wy xHy_q + Wg0Crq + by)
output (None, 3, 1624, 3856, 2) ft = O-(fo * xt + th * }[t—l + ch ° Ct—l + bf)
‘L Ct = ft o Ct—l <+ lt o tanh(ch * xt + th * }[t—l + bC)
Dropout input (None, 3, 1624, 3856, 2) 0; = O—(]/on * xt + Who % j—[t_l + VVCO o Ct + bo)
output | (None, 3, 1624, 3856, 2) j—[t = 0; © tanh(ct)
Conv3D input (None, 3, 1624, 3856, 2) C: Memory ceII; H: Final state cell
output | (None, 3, 1624, 3856, 1) i: Input gate; o: output gate; f: forget gate
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Tau-omega model

parameter (b) water content ?T ) Temperature
(VWC) B (Ts)

l l

Optical depth, Reflectivity?,

T=hxVWC —> r_Ts(l_(U‘l'wV)_TB
Tsy(y + o — wy)
Transmissivity, Single : |
N , Incidence
Yy = exp(—1sech) Scattering Angle (6)
Albedo (w) 8

Dielectric constant?,
_ sin*@ (1 +1r)cos8
© = (1+7r)— (1 —r)cosb

!

Clay —> Mironov Model
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Soil Moisture
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1 — Reflectivity from Tau Omega model
2 — Dielectric constant from Fresnel equations(vertical polarization)

Single Channel Algorithm
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Performance metrics

RMSE: Root Mean Squared Error

1
RMSE = £Z(ypredicted — Ytrue)z
\

1 1
Bias = — E - — — E
n y predicted n Vtrue
Uncertainty

Uncertainty = RMSE = +/Variance + Bias?

Bias
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Results and analysis

Run001 - Predicted Jan 4th ,2020 data assimilated with observed values

Uncertainty 1130|430 |730 w030 |33 1630 |30 2230

Prediction before assimilation  0.0035 0.0129 0.0294 0.0441 0.0650 0.0941 0.1227 0.1522
Prediction after assimilation 0.0034 0.0124 0.0275 0.0402 0.0576 0.0822 0.1047 0.1265
% decrease 2.8596 3.8976 6.3482 8.7593 11.3255 12.6230 14.6393 16.8508

» Assimilation corresponds to replacing the predicted soil-moisture values at the observed grid-points by the Tau-
omega model estimated (“simulating observing of ground points”) soil-moisture values.

Before assimilation uncertainty — After assimilation uncertainty
Before assimilation uncertainty

X 100

0% Decrease =
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Results and analysis

Run002 - Different model runs of Jan 5th ,2020

SNO |Uncerainty 130 430 730 |ioa0 1330|630 lis30 |20

1 Model run (a) 0.0040 0.0134 0.0299 0.0446 0.0655 0.0946 0.1233 0.1527
2 Model run (b) 0.0033 0.0127 0.02922 0.0438 0.0648 0.0939 0.1225 0.1520
3 (b) + observations  0.0032 0.0122 0.0273 0.0400 0.0576 0.0822 0.1050 0.1271
4 % decrease (1&2) 19.0419 5.7619 2.5898 1.7396 1.1843 0.8205 0.6299 0.5084
5 % decrease (1&3) 21.2214 9.4448 8.8265 10.2877 12.1861  13.0965 14.8291 16.7724

Model run (a)

* This model run is driven entirely based on SMAP L4 data.

* No observations are used during this run.

Model run (b)

* This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with
observed values.
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Results and analysis

Run003 - Different model runs of Jan 6t" ,2020

Uncertainty 1130|430 |730 w030 |33 1630 |30 2230

Model run (a) 0.0040 0.0134 0.0300 0.0446 0.0656 0.0946 0.1233 0.1527
Model run (b) 0.0032 0.0127 0.0292 0.0438 0.0648 0.0939 0.1225 0.1520
% decrease 19.3449  5.8651 2.6374 1.7718 1.2063 0.8358 0.6417 0.5179

Model run (a)
e This model run is driven entirely based on SMAP L4 data.
* No observations are used during this run.

Model run (b)
* This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with

satellite observed values.
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Results and analysis

Time series of Soil moisture forecast - Walnut Gulch, AZ, USA
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Time series of Soil moisture forecast - Metolius, OR, USA
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Time series of Soil moisture forecast - Las Cruces,NM, USA




Conclusion

* This paper proposes a convLSTM model to predict soil moisture at high
spatiotemporal resolution. This paper also deals with a science
simulator using Tau-omega model that acts as tool of observing true
soll moisture at ground points with high uncertainty.

* The experiments show a 19% error reduction in the predictions with the
assimilations.

* Future work will be focused on improving this error reduction by
exploring more data layers and other microwave remote sensing
resources.
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