

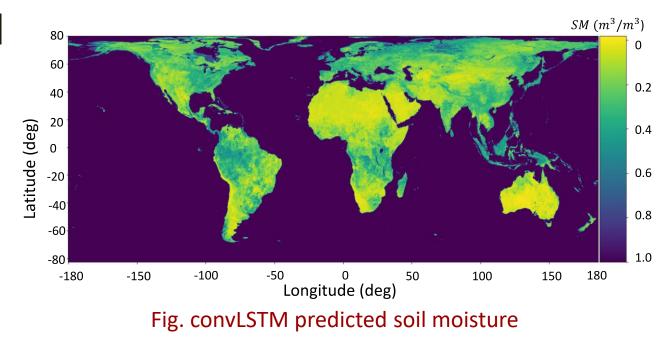
Forecasting soil moisture using a deep learning model integrated with passive microwave retrieval

Archana Kannan¹, Grigorios Tsagkatakis², Ruzbeh Akbar³, Daniel Selva⁴, Vinay Ravindra^{5,6}, Richard Levinson^{5,7}, Sreeja Nag^{5,6}, Mahta Moghaddam¹

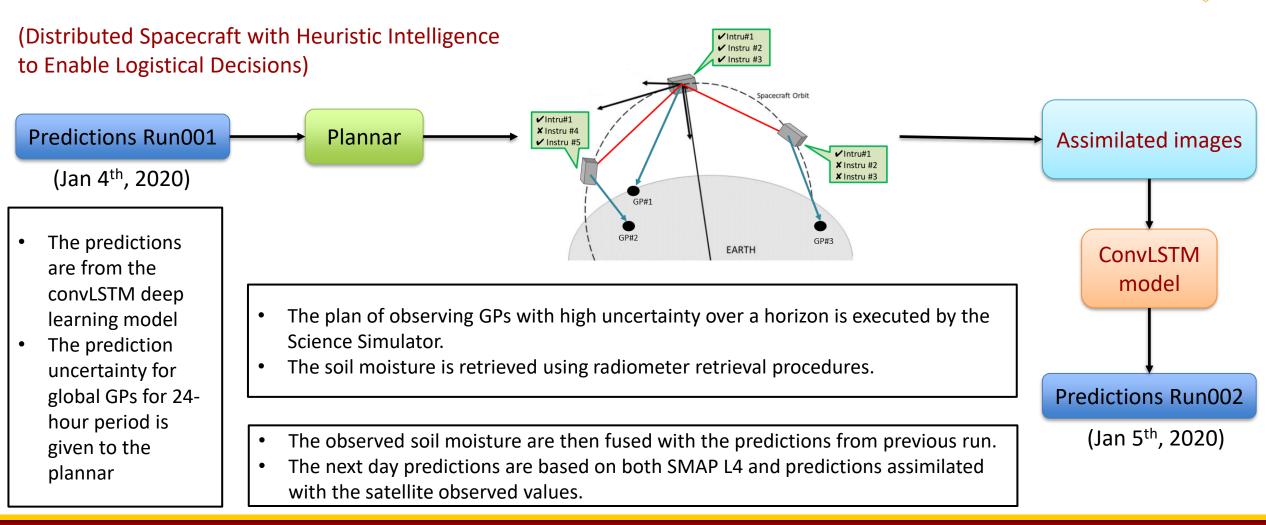
1 University of Southern California, Los Angeles, CA, United States, 2 Foundation for Research and Technology - Hellas (FORTH), Institute of Computer Science, Heraklion, Greece, 3 Massachusetts Institute of Technology, Cambridge, MA, United States, 4 Texas A&M University, College Station, TX, United States, 5 NASA Ames Research Center, Moffett Field, CA, United States, 6 Bay Area Environmental Research Institute Moffett Field, Moffett Field, CA, United States, 7 KBR Wyle Services, LLC, Torrance, CA, United States

Outline

- D-SHIELD background
- Soil moisture forecast model
 - ConvLSTM model
 - Tau-omega model
- Performance metrics
- Results and analysis
- Conclusion



D-SHIELD Background



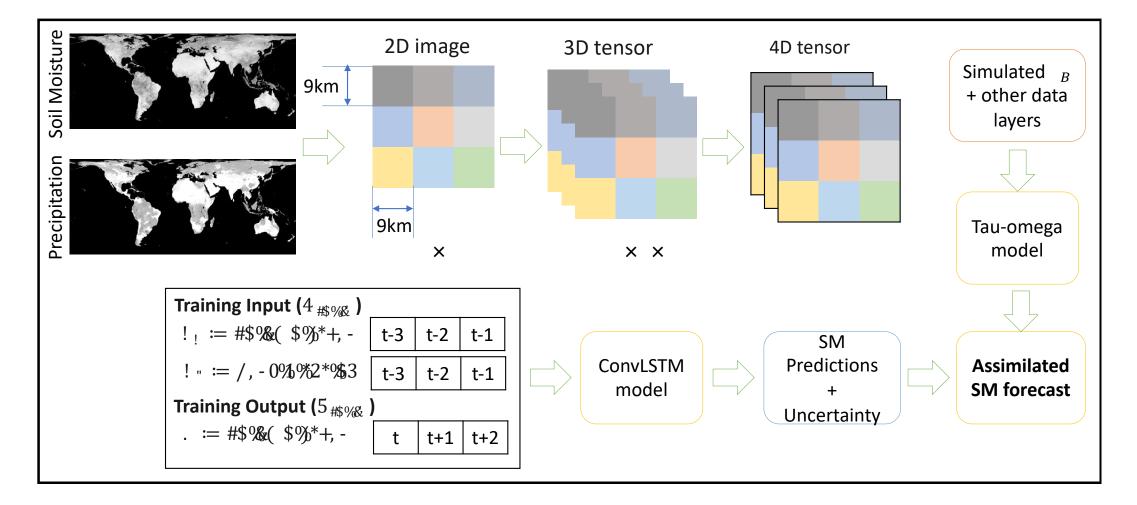
References: [1] Sreeja et al, "D-SHIELD: Distributed Spacecraft with Heuristic Intelligence to Enable Logistical Decisions", IGARSS 2020.

literbi

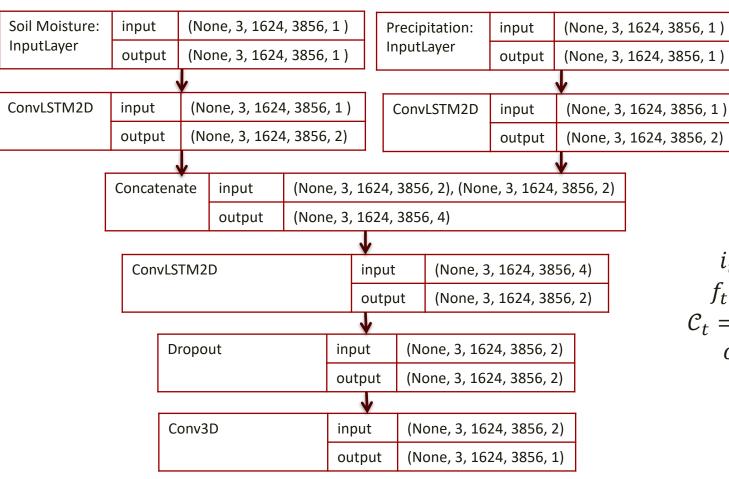
School of Engineering

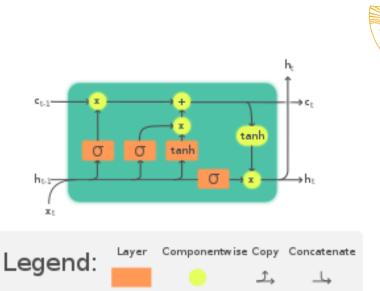
University of Southern Calls, nia

Soil moisture forecast model



ConvLSTM model

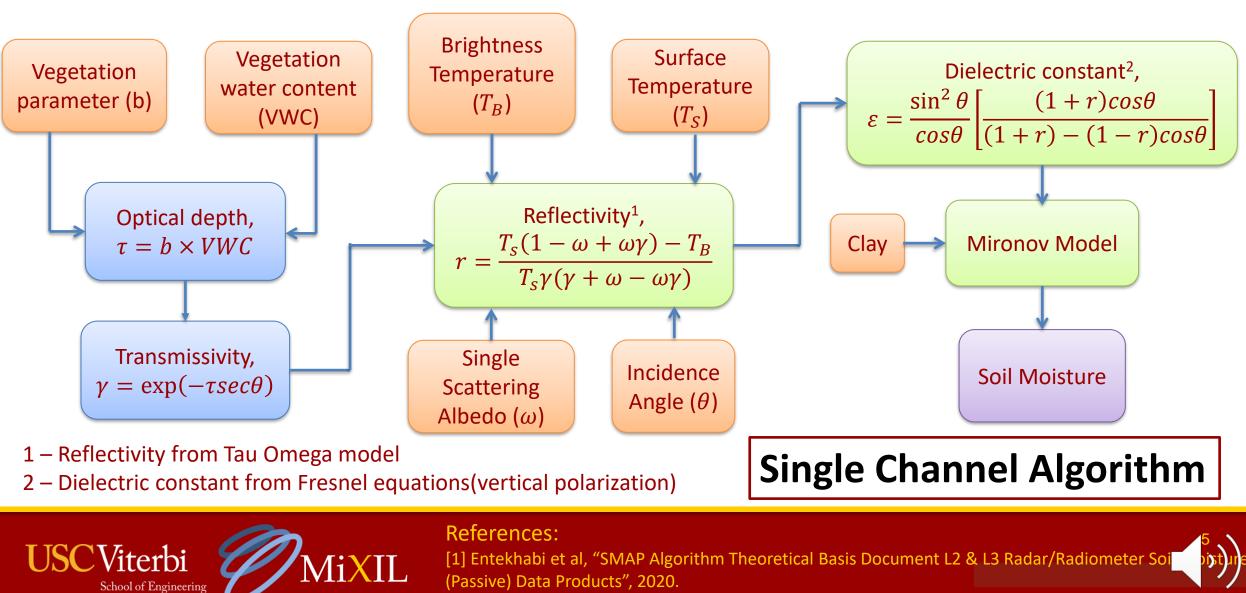




$$\begin{split} i_t &= \sigma(W_{xi} * \mathcal{X}_t + W_{hi} * \mathcal{H}_{t-1} + W_{ci} \circ \mathcal{C}_{t-1} + b_i) \\ f_t &= \sigma\left(W_{xf} * \mathcal{X}_t + W_{hf} * \mathcal{H}_{t-1} + W_{cf} \circ \mathcal{C}_{t-1} + b_f\right) \\ \mathcal{C}_t &= f_t \circ \mathcal{C}_{t-1} + i_t \circ \tanh(W_{xc} * \mathcal{X}_t + W_{hc} * \mathcal{H}_{t-1} + b_c) \\ o_t &= \sigma(W_{xo} * \mathcal{X}_t + W_{ho} * \mathcal{H}_{t-1} + W_{co} \circ \mathcal{C}_t + b_o) \\ \mathcal{H}_t &= o_t \circ \tanh(\mathcal{C}_t) \end{split}$$

C: Memory cell; H: Final state cell i: Input gate; o: output gate; f: forget gate

Tau-omega model



² [2] Mironov et al, "Physically and mineralogically based spectroscopic dielectric model for moist soils", 2009.

Performance metrics

RMSE: Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum (y_{predicted} - y_{true})^2}$$

Bias

$$Bias = \frac{1}{n} \sum y_{predicted} - \frac{1}{n} \sum y_{true}$$

Uncertainty

$$Uncertainty = RMSE = \sqrt{Variance + Bias^2}$$

<u>Run001 – Predicted Jan 4th ,2020 data assimilated with observed values</u>

Uncertainty	1:30	4:30	7:30	10:30	13:30	16:30	19:30	22:30
Prediction before assimilation	0.0035	0.0129	0.0294	0.0441	0.0650	0.0941	0.1227	0.1522
Prediction after assimilation	0.0034	0.0124	0.0275	0.0402	0.0576	0.0822	0.1047	0.1265
% decrease	2.8596	3.8976	6.3482	8.7593	11.3255	12.6230	14.6393	16.8508

• <u>Assimilation</u> corresponds to replacing the predicted soil-moisture values at the observed grid-points by the Tauomega model estimated ("simulating observing of ground points") soil-moisture values.

 $\% Decrease = \frac{Before \ assimilation \ uncertainty - After \ assimilation \ uncertainty}{Before \ assimilation \ uncertainty} \times 100$

<u>Run002 – Different model runs of Jan 5th ,2020</u>

S.NO	Uncertainty	1:30	4:30	7:30	10:30	13:30	16:30	19:30	22:30
1	Model run (a)	0.0040	0.0134	0.0299	0.0446	0.0655	0.0946	0.1233	0.1527
2	Model run (b)	0.0033	0.0127	0.02922	0.0438	0.0648	0.0939	0.1225	0.1520
3	(b) + observations	0.0032	0.0122	0.0273	0.0400	0.0576	0.0822	0.1050	0.1271
4	% decrease (1&2)	19.0419	5.7619	2.5898	1.7396	1.1843	0.8205	0.6299	0.5084
5	% decrease (1&3)	21.2214	9.4448	8.8265	10.2877	12.1861	13.0965	14.8291	16.7724

<u>Model run (a)</u>

- This model run is driven entirely based on SMAP L4 data.
- No observations are used during this run.

Model run (b)

• This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with observed values.

<u>Run003 – Different model runs of Jan 6th ,2020</u>

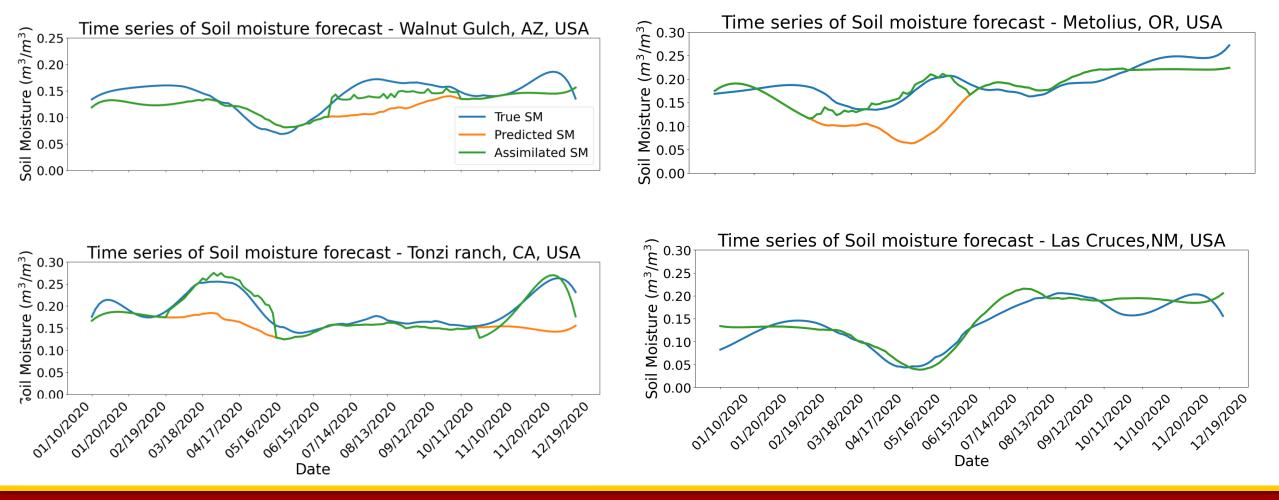
Uncertainty	1:30	4:30	7:30	10:30	13:30	16:30	19:30	22:30
Model run (a)	0.0040	0.0134	0.0300	0.0446	0.0656	0.0946	0.1233	0.1527
Model run (b)	0.0032	0.0127	0.0292	0.0438	0.0648	0.0939	0.1225	0.1520
% decrease	19.3449	5.8651	2.6374	1.7718	1.2063	0.8358	0.6417	0.5179

<u>Model run (a)</u>

- This model run is driven entirely based on SMAP L4 data.
- No observations are used during this run.

Model run (b)

• This model run is based on predictions which are triggered by SMAP L4, the intermediate inputs are assimilated with satellite observed values.



Conclusion

- This paper proposes a convLSTM model to predict soil moisture at high spatiotemporal resolution. This paper also deals with a science simulator using Tau-omega model that acts as tool of observing true soil moisture at ground points with high uncertainty.
- The experiments show a 19% error reduction in the predictions with the assimilations.
- Future work will be focused on improving this error reduction by exploring more data layers and other microwave remote sensing resources.

Thank You

