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ABSTRACT 

 
In this paper we develop a Convolutional Long Short-term 
memory (ConvLSTM) model, a time series deep learning 
neural network, to predict soil moisture, with an add-on 
module of passive microwave (radiometer) soil moisture 
retrieval using the Tau omega model. We incorporate 
antecedent observations, landscape properties, and forcing 
factors such as precipitation, landcover, clay fraction, and 
brightness temperature in the prediction scheme. A 
regularization Monte Carlo Dropout layer is added to the 
network to remove stochasticity and avoid overfitting during 
the training phase. This dropout layer also provides a 
Bayesian approximation to quantify uncertainty during 
forecasting. The model is validated at four Soil Moisture 
Active Passive (SMAP) Cal/Val locations using performance 
metrics such as Root Mean Square Error (RMSE) and Bias to 
evaluate effectiveness of the proposed method. This model is 
developed as a component of the Science Simulator within 
the Distributed Spacecraft with Heuristic Intelligence to 
Enable Logistical Decisions (D-SHIELD) project. 
 

Index Terms— ConvLSTM, Tau-Omega model, Soil 
Moisture 
 

1. INTRODUCTION 
 
Soil Moisture has complex structural characteristics and is 
influenced by various spatial, temporal, and meteorological 
conditions. Developing a mathematical model to capture this 
high degree of spatiotemporal heterogeneity in predicting soil 
moisture fields is a challenging task. 

Many methods have been proposed in the literature to 
estimate soil moisture. With the recent advancements in 
Machine Learning (ML) and availability of satellite based 
remote sensing observations, data-driven models have been 
developed to estimate soil moisture. Cai et al. investigated 
soil moisture prediction using a deep learning regression 

network in the Beijing area in China [1]. Fang and Shen 
produced a near real time forecast of soil moisture using an 
LSTM model [2] for the CONUS area.  

In this work, we adapt the ConvLSTM [3] deep learning 
network to forecast global surface soil moisture three days 
into the future. The model predicts soil moisture along with 
an uncertainty layer, which is determined using the added 
regularization Monte Carlo dropout layer [4], [5]. This 
predicted soil moisture and uncertainty are gridded at 
9𝑘𝑚 × 9𝑘𝑚 resolution. The pixels (spatial location) or 
Ground Points (GPs) with high uncertainty are then 
assimilated with the simulated soil moisture from the passive 
microwave (radiometer) retrieval process using the Tau-
omega model [6]. Both assimilated and unassimilated 
predictions are compared with the NASA SMAP L4 Global 
3-hourly 9 km EASE-Grid Surface and Root Zone Soil 
Moisture Geophysical Data (SPL4SMGP) product [9] to 
assess the accuracy of the predictions.  

This model is developed as a component of the D-
SHIELD project Science Simulator [7]. D-SHIELD consists 
of software tools designed to plan and schedule spacecraft 
payloads and operations, to improve global surface soil 
moisture monitoring via various microwave remote sensing 
assets. The Simulator predicts surface soil moisture and its 
prediction uncertainty, within a finite, but variable, prediction 
window, which enables D-SHILED constellation planner and 
scheduler to determine optimum payload and instrument 
configurations for soil moisture observations.   

 
2. SOIL MOISTURE FORECAST MODEL 

 
The forecast process comprises of two steps: ConvLSTM 
deep learning network and Tau-omega physics-based 
radiometer observation model. For training the ConvLSTM 
model, SMAP L4 geophysical products (soil moisture, 
precipitation) are used. For simulating passive microwave 
products, the brightness temperature (𝑇!) is derived from 36 
km SMAP footprint using Backus-Gilbert interpolation on 



 
Figure 1. Framework for forecasting global soil moisture using SMAP satellite driven geophysical data products

the 9 km EASE-Grid using the radiometer vertical 
polarization.   

Using 𝑇! along with surface temperature, vegetation 
water content, and clay percent in the soil, the values of soil 
moisture are estimated using the Tau-omega model. Figure 1 
explains the forecasting process in detail. 
 
2.1 ConvLSTM deep learning model 
 
ConvLSTM is gaining popularity in various fields for its 
ability to predict future state using a series of past images. 
The future state of each pixel is determined by the input and 
past states of its local neighbors. The neural network trained 
to predict soil moisture comprises of convolutional layers that 
perform convolution manipulations on the input images and 
intermediate layers; concatenation layer for combing 
antecedent soil moisture, precipitation images; and a dropout 
layer. 

The model is trained with the 2015-2019 historical 
SMAP L4 soil moisture and precipitation data with a chosen 
window size. This window size determines the temporal 
resolution of predictions. Once the model is trained, it is used 
to predict soil moisture for the year 2020, with SMAP L4 soil 
moisture as input, three days into the future. The prediction is 
repeated for multiple times to calculate mean prediction and 
standard deviation from the mean, which is considered as the 
prediction uncertainty.  
 
2.2 Tau-omega model 
 
The GPs, where the uncertainty of soil moisture prediction 
from ConvLSTM model is higher than 0.04 m3/m3, is 
assimilated with the radiometer retrieved soil moisture. The 
baseline algorithm for passive microwave soil moisture 
retrieval follows the SMAP Single Channel Algorithm at 
Vertical polarization [6].  

Using the following data layers: vegetation parameter 
depending on the landcover type (𝑏), surface temperature 

(𝑇"), vegetation water content (𝑉𝑊𝐶), single scattering 
albedo (𝜔), incidence angle (𝜃), the transmissivity (𝛾) is 
calculated by 𝛾 = 𝑒𝑥𝑝(−(𝑏 × 𝑉𝑊𝐶)	𝑠𝑒𝑐𝜃). Using 𝛾, 
reflectivity (𝑟) is calculated by: 

𝑟 =
𝑇"(1 − 𝜔 +𝜔𝛾) − 𝑇!
𝑇"𝛾(𝛾 + 𝜔 −𝜔𝛾)

 

From reflectivity, using Fresnel equation inversions, 
dielectric constant (𝜀) is computed as follows:  

𝜀 =
𝑠𝑖𝑛# 𝜃
𝑐𝑜𝑠𝜃 >

(1 + 𝑟)𝑐𝑜𝑠𝜃
(1 + 𝑟) − (1 − 𝑟)𝑐𝑜𝑠𝜃? 

Finally, the calculated dielectric constant along with clay 
percent is used in the Mironov dielectric model [8] to estimate 
soil moisture.   

 
Figure 2. Comparison of predicted and SMAP SM for different 

prediction windows at Tonzi ranch, CA, USA 

3. CHOOSING PREDICTION WINDOW 
 
The prediction temporal resolution is dependent on the tensor 
size of the inputs to the ConvLSTM model. Different tensor 
sizes within the model were explored. A localized experiment 
was performed on an area of 54𝑘𝑚 × 54𝑘𝑚 grid centered at 
30.3◦N, 120.9◦W at Tonzi Ranch CA, USA. SMAP L4 
product is available in 3-hourly resolution. Combining 3, 6, 
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and 8 datapoints, 6-, 12-, 24- hours predictions were 
generated. The results are shown in Figure 2. The 6-hour 
prediction window exhibited lowest error of 0.02 m3/m3. 
From this, the 6-hour window option was chosen for global 
predictions of soil moisture. 
 

 
Figure 3. Soil moisture daily average forecasts for (a) Walnut 
gulch, (b) Tonzi ranch, (c) Metolius, (d) Las Cruces for a year 

4. EXPERIMENTAL RESULTS 
 
The forecast time series for four SMAP Cal/Val locations is 
given in Figure 3 and the performance metrics are in Table 1. 
The prediction varies with different landcover type. For dry 
regions the prediction follows true soil moisture with no need 
for assimilation as seen in location (d). Precipitation and 
drying down is not entirely captured by the deep learning 
model, leading to higher uncertainty and the need for 
assimilation with simulated soil moisture. 
 

The ConvLSTM model exhibits 0.01 − 0.05	𝑚$/𝑚$ 
RMSE globally. With addition of radiometer retrievals there 
is an error reduction of 20-50%.  

 
5. CONCLUSION 

 
In this work we developed a time series deep leaning network 
to estimate soil moisture from satellite derived data products 
with a radiometer retrieval module to assimilate high 
uncertainty predictions. This predictive model is part of the 

Science Simulator module within the D-SHIELD project. In 
future work, including radar and other microwave sensing 
resources to the predictions will be explored. 
 
(NOTE: All deep leaning simulations were done using 
Google TensorFlow Keras library.) 
 
Table 1. Performance metrics for different locations in Figure 4. 
Pred - Predicted SM; Assim - Assimilated SM with retrieved SM 

Loc IGBP class RMSE Bias 
Pred Assim Pred Assim 

(a) Shrubland 0.0293 0.0208 0.0194 0.0127 
(b) Woody savanna 0.0466 0.0149 0.0319 0.0051 
(c) Evergreen forest 0.0457 0.0230 0.0248 0.0055 
(d) Bare surface 0.0192 0.0192 0.0070 0.0070 
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