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A B S T R A C T   

Accurate and timely flood forecasts are critical for protecting people and infrastructure in a changing climate. 
Satellite remote sensing provides the necessary wide area coverage and period revisits to measure episodic heavy 
precipitation and resultant urban floods. We propose two methods to assimilate satellite-observed precipitation 
into hydrologic models in real time to update flood forecasts, bypassing two previous barriers in this technology: 
infrequent satellite overpasses and long model run times. Constellations of small satellites overcomes the first 
barrier by providing frequent flights over an area of interest; however, these constellations require coordination 
and planning to capture precipitation data where it is most needed to inform flood forecasts. The primary 
purpose of this paper is to address the second barrier – that is high computational costs that make it infeasible to 
run flood forecast models on-board these satellites so that they can re-orient to measure where most needed. We 
develop a simple regression-based approach and a machine learning framework (Long Short-Term Memory 
(LSTM) models) to provide reliable flood forecasts using satellite-observed precipitation at a fraction of the 
computational cost of physics-based hydrologic models. We apply these approaches to a test case for the Atlanta 
metropolitan region using the Weather Research and Forecasting model hydrologic modeling system (WRF- 
Hydro) to simulate flooding across the model domain for several precipitation events. We compare the accuracy 
of our proposed approaches to the WRF-Hydro model using different spatial extents and temporal frequencies of 
precipitation observations to examine different plausible satellite constellation scenarios. The LSTM approach 
trades performance accuracy and adaptability for computational efficiency, which can be important in a time and 
resource constrained scenario. The LSTM model reduces total error up to 38% from an initial flood forecast. 
Additionally, this approach correctly classified flooding to within one flood magnitude category in ~90% of 
cases. These new forecasting algorithms can be used onboard constellations of small satellites to observe ongoing 
flood events, update short term predictions, and schedule observations to maximize useful measurements and 
thereby improve flood warning systems for protecting residents and properties.   

1. Introduction 

Remotely sensed observations from satellites play a critical role in 
today’s disaster forecast systems. The observations made by satellites 
along with those made by terrestrial sensors are assimilated into global 
and regional Numerical Weather Prediction (NWP) models to provide 
improved forecasts and give actionable intelligence to the local 
authorities. 

Satellites and their corresponding instruments are expensive re
sources. For example, the Soil Moisture Active Passive (SMAP) mission 
(NASA, 2020) which consists of a single satellite with a radar and 
radiometer instrument (radar unit currently non-functional), costs 

nearly 1 billion USD and takes 3 days to map the entire world. Efforts are 
underway to develop cheaper observational platforms consisting of 
several smaller satellites in a distributed layout, where constellations are 
the most common geometric configuration. Examples of hydrology- 
relevant constellation missions are the CYGNSS (Ruf et al., 2018) (in 
orbit), TEMPEST (Reising et al., 2018) (in development), TROPICS 
(Blackwell et al., 2018) (in development), and RainCube (Peral et al., 
2015) (in orbit). The schedule of locations and times for the observations 
to be made by a satellite is calculated by ground computers, with human 
input, and is uploaded to the satellites via ground stations during 
intermittent overpasses. 

Currently, many satellites can obtain infrequent data and coverage of 
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specific areas. For example, the GEOS-5 model uses amalgamated data 
from a variety of sources, such as NOAA’s polar-orbiting weather sat
ellites, as well as the Aqua and SSM/I instruments which have a spatial 
resolution of upwards of tens to hundreds of km, depending on the 
backscatter frequency (Rienecker et al., 2008). The satellites that carry 
these instruments are multi-generational governmental assets, and thus 
are few in number, allowing them to take only precise, localized ob
servations due to orbital constraints. With the advent of satellite swarms 
and constellations, it has become possible to observe different regions 
and to gather data globally at larger spatial extents, while sacrificing 
some of the precision afforded by highly calibrated instrumentation. 
Although the latter characteristic lends itself poorly to detailed 
modeling, the highly parallel nature of distributed satellite operations 
allows for quick reaction and agile maneuvering that were previously 
not possible. 

Due to the dynamic nature of satellite and ground point access op
portunities, observations made by satellites are expected to be sparse 
even as constellations grow. Given this sparse opportunity and cost of 
resources to make observations (power, data limits), it is always more 
efficient to capture data which has been predicted to be useful rather 
than to first capture an observation and later determine its utility 
(Ravindra et al., 2020). This motivates the concept of adaptive sensing 
(Nag et al., 2020), as illustrated in Fig. 1, wherein past observations are 
processed and information extracted from them is used to forecast the 
utility of future observations, which then informs the observation 
planner – all onboard the satellite without humans or ground stations in 
the loop. While this basic framework is relevant to remote observation of 
a variety of phenomena (e.g., tropical storms, forest fires, etc.), this 
paper focuses on transient precipitation and urban floods. 

Generally, adaptive sensing requires a simulator (of the phenomenon 
of interest) which can rapidly perform data assimilation and forecasting, 
so that the observation plan of the satellites can be updated with mini
mal latency. Physics-based NWP hydrological models such as the 
Weather Research and Forecasting hydrologic modeling system (WRF- 
Hydro) provide (state of art) accurate forecasts, but in turn require 
larger computing resources than those available onboard satellites. The 
most rapidly adaptive set-up would be a simulator onboard the satellite 
which can assimilate the previous observations on the fly and produce 
updated forecasts which dictate the next set of observations to be made. 
To enable adaptive sensing by future satellites, onboard autonomy is 
required in processing instrumental data, in predicting future observ
ables, and in planning and implementing observation schedules to 
maximize science utility. Such a sense-plan-act feedback loop would run 
in real time (i.e., make the satellite completely autonomous), and is thus 

constrained by limited satellite resources as well as physical processes, 
such as orbital dynamics (Nag et al., 2019). It is also possible to run the 
sense-plan-act in conjunction with the ground station, wherein the sat
ellite observations would be downlinked to the ground station, which 
can process them, extract information, assimilate the data, issue fore
casts, and update the observation plan for the satellite. The new plan 
would be uplinked to the satellite upon the next overpass. While moving 
the bulk of the computation to ground computers reduces the need for 
onboard resources and still keeps the human out of the loop, this sense- 
plan-act loop has much longer delay times, due to the sparsity of 
satellite-ground station contacts. 

This paper focuses on the forecast module of the adaptive sensing 
loop (the box in Fig. 1). For the presented application, satellites make 
radar-based precipitation measurements as they fly over urban regions 
and use these measurements as direct input to predict flood levels in 
small to medium-sized streams, which are otherwise not directly 
observable from space. Onboard planners can then use these flood 
predictions to schedule and focus satellites observations upon areas of 
higher urgency (e.g., more flooding) and save the opportunity cost of 
observing locations with negligible flood activity. Previously, large 
spacecraft (e.g. EO-1) have been tasked to observe large floods (e.g., in 
Thailand) using ground-based infrastructure for processing, assimilation 
and scheduling (Chien et al., 2019). Recently, improvements in onboard 
autonomy on smaller satellites (Doubleday et al., 2015) and full body re- 
orientation agility on larger satellites have created the potential to run 
the scheduler on the satellites themselves followed by re-orientation of 
the instruments or entire satellite to track scheduled ground points (Nag 
et al., 2018). While ground support will always remain as a backup for 
planning onboard operations, the limited contact frequency is better 
utilized in communicating high-level goals and data a few times a day, 
while lower-level decisions in observational planning can be migrated to 
the satellites’ discretion over time. The benefits further amplify when 
multiple satellites can coordinate their observations by communicating 
inferences and plans (Nag et al., 2020b), thus circumventing the lengthy 
delay of communicating with ground-based relays while observing fast 
evolving or transient phenomena (Linnabary et al., 2019) such as urban 
floods. 

This paper has two objectives: 
Propose and investigate alternative flood simulation models that are 

less computationally expensive than a standard physics-based model 
(WRF-Hydro), such that these models can run on satellites as part of the 
onboard predictor and scheduler that enable adaptive and responsive 
remote sensing 

Compare the prediction accuracy of these alternative flood models to 

Fig. 1. Adaptive sensing concept for application of flood monitoring from satellites. The planned observations to be made by the satellite are continually updated 
with new forecasts of the phenomenon (flood) triggered by previously made observations. This paper targets the block called “Data Assimilation and Forecast 
Simulator”. The lower half of the figure may be run onboard (rapid autonomy) or on the ground using downlinked data followed by uplinked plans 
(slower autonomy). 
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WRF-Hydro for a range of satellite observation frequencies and spatial 
coverages, with the goal to show that loss in accuracy is within 
acceptable levels that justify the benefits of near real-time planning and 
execution 

The document is organized as follows. In Section 2, we provide 
background on flood forecasting and machine learning techniques. In 
Section 3, we discuss the test case application to modeling riverine 
flooding in the Atlanta metropolitan region, including the development 
of two computationally efficient flood prediction approaches. Section 4 
describes the results of this modeling and Section 5 discusses the sig
nificance of these findings and suggests areas for improvement. 

2. Background 

2.1. Flood forecasting 

Flooding is one of the most common and expensive natural disasters 
worldwide, and flood risks are increasing due to climate change, 
development, and population growth (Andersen and Shepherd, 2013). 
Traditionally, flood monitoring is achieved using networks of real-time 
stream gaging stations, such as the network operated by the U.S. 
Geological Survey. These data are also used in conjunction with hy
drologic models to forecast river discharge and flood risk, at a variety of 
temporal scales (i.e. hours, days, or weeks). These hydrologic models 
require recent and forecasted precipitation as an input – data that may 
come from a variety of sensors and weather models. Observed precipi
tation data are typically obtained from gauges, radar, or satellite sensors 
(Li et al., 2016). Regardless of the source, these data can be used to 
update flood forecast models over time and improve accuracy. 

Flood forecasting using coupled atmospheric-hydrologic-hydraulic 
modeling is maturing and can be applied at a variety of scales. For 
example, the Global Flood Monitoring System uses satellite-based pre
cipitation and a hydrologic model to simulate river flooding for most of 
the globe (Wu et al., 2014) at a coarse spatial (12 km) and temporal scale 
(3 h) that may miss short flood events on small and medium sized 
streams. In the U.S., the National Weather Service continuously updates 
streamflow forecasts at millions of points throughout the country (Salas 
et al., 2018), while another system uses radar-derived precipitation data 
to simulate flash floods (Gourley et al., 2017). These tools tend to be 
complex and data-intensive, requiring significant resources to run. Of 
particular concern is the availability of reliable precipitation data to 
generate initial flood forecasts and to update those forecasts as addi
tional precipitation data become available. Satellite derived precipita
tion estimates can be useful for this purpose and are especially important 
for developing countries without the resources to develop extensive 
ground-based sensor networks to monitor both precipitation and river 
flooding (Rahman and Di, 2017). 

2.2. Neural networks 

In the last decade, neural networks have been at the forefront of 
machine learning (ML) and artificial intelligence research. Their suc
cessful application in a wide range of problems from image classification 
(Krizhevsky et al., 2012) to self-enabled reinforcement learning (Mnih 
et al., 2013) have paved the way for widespread adoption of these 
methods, and have started to influence data-driven methods within 
Earth science as well (Chen et al., 2016; Li et al., 2020). We will provide 
here an overview of artificial neural networks, particularly long short- 
term memory (LSTM) models, which will form the basis of our ML 
methodology. 

Neural networks are loosely modelled after the structure of the 
human brain by mimicking layers of cascading neurons transporting 
electrical signals. Neurons that activate together tend increasingly to do 
so over time, which gives rise to complex capabilities such as pattern 
recognition and perception. The basic equation for each “neuron” within 
a neural network is described as: 

z = f (W*x + b) (1)  

where z is the output, W the weights to be learned, x the input, and b the 
bias, with the * symbol representing multiplication (although this can be 
extended to the Hadamard product or convolution). Generally, W can 
also represent a tensor, with a set number of filters k, such that if x is a 
vector of length n and W is of size k× n, the resulting z will be of length 
k. The nonlinear activation function f relates the importance of the 
linear output, and although historically the sigmoid function has be 
utilized to bound the output between 0 and 1, the Rectified Linear Unit 
(RLU) is more widely adopted due to its numerical and backpropagation 
properties (Nair and Hinton, 2010). Often, these “neurons” are stacked 
in layers such that the output of one layer acts as the input to the next 
layer. 

Of particular interest is the recurrent neural network (RNN) and its 
variant the LSTM, depicted in Fig. 2. The structure of the RNN works 
well for sequential data, and one of the more successful applications of 
this was in language translation tasks (Wu et al., 2016). At its core, the 
RNN allows for chain-like structures consisting of identical recurring cell 
blocks A, which takes an input X and outputs a result h. However, an 
additional output C (known as the cell state) is also generated, which is 
passed into the next recurring block and is meant to retain some of the 
“memory” that lingers from previous cell blocks. In this way, certain 
features from previous states that might be important are encoded 
within the cell state, which may affect later outputs. 

The LSTM is an improvement on the original RNN (Hochreiter and 
Schmidhuber, 1997), by incorporating additional interactions per cell 
block. Namely, we include the sigmoid and hyperbolic tangent functions 
to the equations such that we can manipulate the importance of the 
input, allow for previous cell states to expire or be forgotten, add to the 
existing cell states, and to generate an output relevant to the current 
input (Olah, 2015). Further variants of the LSTM have been developed, 
such as the gated recurrent unit (GRU), which increases the complexity 
of each cell (Chung et al., 2015). However, the adaptation of this 
network structure can be readily obvious: given the inputs X (precipi
tation and static physical characteristics), we can generate flood outputs 
h per time step, while keeping the internal weights and biases of each 
cell state identical across all time steps. Furthermore, if we can gener
alize the model of the river flow encapsulated and described by cell A, 
then we can apply the LSTM across all river flows. Furthermore, con
cepts such as water retention and delayed flows can be represented by 
the cell state C. While not perfect, this model is much simpler than 
physics-based hydrological models and thus has the potential to be 
ported onto satellite systems which are resource constrained. 

The idea of utilizing RNNs and LSTMs for modelling hydrological 
processes is not a new one. A variety of machine learning approaches 
have been successfully applied to forecast river flows (Yaseen et al., 
2019), including LSTM models (Kratzert et al., 2018). However, in many 
cases, LSTMs have been used to forecast flows in larger rivers over long 
time scales (e.g. daily or monthly flows) (Kao et al., 2020; Le et al., 
2019). One study applied LSTMs to short, flash flood events, through a 
large, mountainous watershed (Song et al., 2020), while others have 
incorporated LSTMs into an urban flood warning system (Lee et al., 
2020). LSTMs have also been used to improve rainfall forecasts which 
were then fed into a hydrologic model for flood prediction (Nguyen and 
Bae, 2020). In our work, we applied LSTMs to forecast sub-hourly 
streamflow in an urban setting using a bare-bones approach requiring 
minimal computational complexity. It is our goal to demonstrate the 
validity and potential for fast and reliable onboard prediction of flash 
flooding events on satellites without ground-based communication, 
allowing for agile maneuvering of satellite resources in a time-sensitive 
environment. 
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3. Methodology 

This section proposes methods for data assimilation and forecasting 
to inform the satellite scheduler’s future plans. The models are built to 
enable adaptive sensing such that the location of future satellite obser
vations can be determined as a function of past observations. Further
more, these models can either be run in a centralized ground-based 
location with the results uplinked to the constellations, or run on every 
satellite in the constellation instead. The spatial resolution is a function 
of the geographic extent of locations of interest and the instrument field 
of view (e.g. rain radar). The temporal resolution or re-run cadence is a 
function of the size of the constellation since more satellites allow more 
measurements, and therefore more updates. Our proposed methods are 
generalizable to many natural phenomena where satellite observations 
of ongoing events can be incorporated into forecast models (e.g., wild
fires or hurricanes). The subsections below use representative examples 
of a constellation adaptively sensing a flood event in a single city. They 
are also easily extendable to multiple floods in various locations around 
the globe. 

3.1. Observing system simulations 

The goal of this paper is to report the accuracy of forecast algorithms 
that can run near real time onboard satellites. Specifically, we are 
looking to predict river flooding as a function of observed transient 
precipitation over a specific city over a predefined duration of time, 
wherein parts of the city can be sporadically observed by satellite 
overpasses. To decouple satellite dynamics from the predictor problem, 
the proposed flood forecasting models are applied for custom, variable 
samples in space and time. From a satellite’s perspective, all regions of 
interests across the globe can be spatially discretized into grid cells of 
any spatial resolution. Any of these grid cells can be observed any time a 
satellite overpasses. Onboard autonomy models can then be “updated” 
with new predictions for every set of observations. While the results 
presented in this paper are unique to our chosen test case, the basic 
sampling approach is generalizable across any urban region with small 
streams, and can be adapted to any combination of sampling frequency 
and spatial extent, i.e. any constellation topology. 

We chose the Atlanta metropolitan area as our test case. We modeled 
riverine flooding using the WRF-Hydro hydrologic model version 5 
(Gochis et al., 2018) (Fig. 3). WRF-Hydro is a distributed hydrologic 
model that links a land surface model (Noah-MP) (Niu et al., 2011) with 

Fig. 2. (Left) Recurrent neural network structure; (Right) Internal structure of a long short-term memory network. Adapted from (Olah, 2015). Recurring cell blocks 
(A) takes inputs (X) and outputs a result (h). Cell states (C) are also generated and passed to subsequent cell blocks. 

Fig. 3. Map of the study area including percent impervious cover for the model domain (NLCD 2016 data), stream network, and the nine USGS gages used for model 
calibration and validation. 
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terrain and channel flow routing modules to simulate streamflow. While 
WRF-Hydro can be coupled to the Weather Research and Forecasting 
(WRF) weather model (Skamarock et al., 2008), we ran WRF-Hydro in 
uncoupled mode, instead supplying it with meteorological forcing data 
(primarily precipitation) from the North American Land Data Assimi
lation System (NLDAS) (hourly time step, 4 × 4 km spatial resolution). 
The model was run for a 72 × 72 km area, with a grid resolution of 900 
m for the land surface model and 30 m for the terrain and channel 
routing. While this grid resolution is relatively coarse, especially for 
urban areas, we were in part limited by the resolution of model inputs (e. 
g., digital elevation model, land cover). Furthermore, terrain and 
channel routing resolutions as coarse as 250 m have been shown to be 
adequate for modeling flooding in urban areas (Kim et al., 2021). We 
incorporated both surface and subsurface flow routing and used the 
Muskingum-Cunge (Cunge, 1969; Gochis et al., 2018) reach-based 
channel routing option. Model streamflow was output at 15-minute 
time steps. This temporal resolution was chosen because a satellite 
overpass for any ground target can be as frequent as every 15 min for a 
constellation with dozens of satellites in Low Earth Orbit. 

Most major model inputs (e.g., soil parameters, land use, and land 
surface model variables) were obtained from the WRF Preprocessing 
System (WPS) data download website (NCAR, 2020). Hydro-enforced 
digital elevation models (DEM) representing local topography were 
obtained from the USGS National Hydrography Dataset v2 (NHD v2). 
We manually edited some of this DEM to remove bridges and allow 
accurate flow routing. WRF-Hydro was calibrated by trial and error by 
adjusting several static landscape and soil variables (Table 1). All pa
rameters except refkdt were simply scaled higher or lower from their 
starting value (a function of land use or soil type). Refkdt was calibrated 
in a spatially explicit way based on average percent impervious cover for 
each grid cell estimated from 2016 National Land Cover Database 
(NLCD) data (Yang et al., 2018). Areas with higher imperviousness were 
given lower refkdt values (less infiltration). We therefore account for 
some of the high spatial variability in land cover present in urban areas. 

We use WRF-Hydro’s results to train computationally efficient 
models that can run onboard satellites, introduced in the next section. 
This paper does not seek to verify the accuracy of or improve WRF- 
Hydro, and our approach would hold if we replaced WRF-Hydro with 
a different physics-based model with better forecast accuracy because 
our simpler forecasting methods could be trained on that instead. The 
purpose of the WRF-Hydro model was to provide a test case for which we 
could develop and apply these alternative, simpler flood forecasting 
approaches. The goal was not to perfectly simulate a specific flood event, 
but instead to capture physically realistic spatial and temporal patterns 
of flooding in an urban area. We could use only observed river discharge 
data for this analysis; however, these data are available only at a few 
discrete monitoring sites. Modeling, on the other hand, provides simu
lated river discharge at all points along the entire stream network. Still, 
the WRF-Hydro model does not account for many hydrologic complex
ities in urban areas – such as stormwater pipes, reservoirs, or other 
infrastructure. Despite this simplification, the model results provide a 

useful and physically realistic flood case (based on model calibration 
and verification) that enables us to test our proposed flood forecasting 
methods. 

WRF-Hydro was calibrated on a single storm event during April 5–6, 
2017. Modeled streamflow was compared to hydrographs from nine U.S. 
Geologic Survey (USGS) gages in the Atlanta metro area (Table S1). 
Details on USGS stream gaging methods can be found in (Carter and 
Davidian, 1968). The calibrated model was then validated on a separate 
storm event on June 20–21, 2017. For both model calibration and 
validation, a roughly 4 month model spin up period was used. 

Model performance was assessed using two metrics: Nash-Sutcliffe 
Efficiency (NSE) (Nash and Sutcliffe, 1970) and percent bias (PBIAS). 
NSE is a common measure of hydrologic model performance and ranges 
from − ∞ (worst) to one (best): 

NSE = 1 −

∑T

t=1

(
Qt

0 − Qt
m

)2

∑T

t=1

(
Qt

0 − Q0

)2 (2)  

where Q0 is the mean of observed discharges, Qt
m is the modeled 

discharge at time t, and Qt
0 is the observed discharge at time t. Percent 

bias ranges from − ∞ to ∞, with negative values indicating under- 
prediction of discharge, positive values indicating over-prediction of 
discharge: 

PBIAS =

∑T

t=1

(
Qt

m − Qt
0

)

∑T

t=1
Qt

0

*100 (3) 

The calibrated model results were also used to develop “flood values” 
to be used by the satellite scheduling optimizer. This flood value was 
representative of the areas where satellite-measured precipitation would 
be most valuable for assessing flood risk. Modeled channel discharge 
was scaled by an estimate of what constituted a “flood” at each location. 
For simplicity, we used the 2-year recurrence interval flow rate (Q2, the 
flow that has a 50% chance of happening in any year) as this is a rough 
estimate of the flow that completely fills a river channel (Williams, 
1978). For each stream reach, Q2 was estimated from the USGS regional 
regression equations for urban streams in the region (Feaster et al., 
2014). Flood value was thus defined as: 

flood.val =
Qm

Q2
(4) 

Each stream reach has a single value of Q2 (based on watershed area 
and percent of impervious cover). However, the modeled flow rate (Qm) 
is output every 15 min for each stream reach. Therefore, both Qm and 
flood.val vary through time at each location. We also examined cate
gorical flood magnitude. The National Weather Service (NWS) defines 
four flood stages based on impacts to surrounding infrastructure and 
property: action, minor, moderate, and major floods. For all active 
stream gages in Georgia with NWS flood stages, we converted these 
stages to discharges based on the published USGS gage rating curve and 
then calculated their corresponding flood.val. Using these gage-derived 
values, we estimated flood.val cutoffs that corresponded to each of 
these NWS flood stages. This provided a more realistic assessment of 
relative flood impacts. Separation of the flooding values based upon the 
NWS categorization of flood intensity into categories is as follows: 

0 ≤
Qm

Q2
< 0.7→Noflood  

0.7 ≤
Qm

Q2
< 1→Action  

1 ≤
Qm

Q2
< 1.6→Minor  

Table 1 
WRF-Hydro parameters included in the manual calibration. Ranges of final 
calibrated values are shown for spatially-variable parameters. Subsurface flow 
slope was the same value across the whole model domain.  

WRF-Hydro 
Parameter 

Description Calibrated 
Value 

OV_ROUGH2D Overland flow roughness coefficient 
[unitless] 

0.02–0.8 

dksat Saturated hydraulic conductivity [m/s] 1.3e-7–5.3e-7 
bexp Pore size distribution index [unitless] 2.8–3.5 
refkdt Surface runoff parameter [unitless] 0.1–4.0 
LKSAT Lateral hydraulic conductivity [m/s] 0–3.4e-8 
subsurface flow 

slope 
Parameter controlling percolation versus 
lateral subsurface flow [unitless] 

0.1  
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1.6 ≤
Qm

Q2
< 2.4→Moderate  

2.4 ≤
Qm

Q2
→Major (5) 

We used the output from the WRF-Hydro model to develop two 
simplified models to update flood predictions with the satellite-observed 
precipitation data. The first is a simple regression-based approach and 
the second uses a machine learning framework. Results from both 
methods were compared to the calibrated results of WRF-Hydro, which 
is taken as the “true” flood magnitudes for the study area. 

3.2. Prediction using a Regression Model 

Initially, we developed a simple linear regression model to update 
flood values across the model domain based on new precipitation data. 
To explore the relationship between precipitation and flood value, 
several WRF-Hydro simulations were run. The precipitation from the 
April 5–6, 2017 event was taken as baseline rainfall and was varied 
(artificially) to give several sets of precipitation inputs. Precipitation 
was uniformly scaled by values from 2 to 10× and 1/(2 − 10×) (e.g., 1/ 
10×, 1/9×, 1/8×, … 8×, 9×, 10×) the original precipitation. This 
captured how increasing or decreasing rainfall would translate to 
changes in river discharge and flood magnitude and provided a larger 
dataset to fit the regression model. There was a clear non-linear rela
tionship between change in precipitation and changes in flood magni
tude across the stream network; with all reductions in precipitation 
below ½ essentially reducing discharge to the same, low value (e.g., 
scaling precipitation by 1/3 or 1/5 essentially resulted in no flooding). 
Therefore, further analysis focused only on cases where precipitation 
was scaled by 1/2 or greater. 

For the cases where ( precip.obs
precip.mod ≥ 0.5), a simple regression function was 

fit to the data to predict new flood.val based on the old flood.val, the 
magnitude of the precipitation change, and the static watershed char
acteristics (DA – drainage area, refkdt – infiltration parameter, and ksat – 
saturated hydraulic conductivity). For cases where precip.obs

precip.mod < 0.5, flood.

val new is assumed to be simply precip.obs
precip.mod times flood.val old. The equa

tions that describe this regression model are as follows:  

flood.val new =
precip.obs
precip.mod

*flood.val old,

for
precip.obs
precip.mod

< 0.5
(7) 

In all cases, precip.mod is the initial estimate/forecast of precipitation 
and precip.obs is the observed precipitation. The ratio precip.obs

precip.mod represents 
the ratio of how much higher or lower this observed precipitation is 
compared to the initial estimate. This regression model requires an 
initial prediction of flooding (flood.val old). That is, it takes some fore
cast of streamflow and updates this forecasted value based on differences 
in observed and forecasted precipitation. This is different than the ma
chine learning approach (see below), which predicts stream discharge 

through successively iterating upon the cell state, requiring an initial 
condition of no previous precipitation and streamflow for the very first 
timestep. 

3.3. Prediction using machine learning 

The overarching goal for developing ML-based models for flood 
prediction was that this simpler approach could produce comparable 
outputs to that of high fidelity hydrology models such as WRF-Hydro, 
but with only a fraction of the necessary computational resources and 
runtime. Our models do not aim to be as accurate as WRF-Hydro; rather, 
the aim is to produce results that are good enough and are able to be run 
on constrained satellite platforms. These quick onboard estimates can 
direct satellites to observe locations where additional data are most 
valuable, without the need for ground-based planning and delayed data 
transfers. 

The general framework for the model is such that each stream is 
represented as a node. Each node takes an input I, consisting of the 
precipitation and any stream specific domain parameters (Table 2), and 
outputs the flow rate Q (subscripts u and d represent upstream and 
downstream, respectively). WRF-Hydro reports the total flow rate Qtotal, 
which consists of all upstream flows as well as the flow within the cur
rent stream due to local precipitation. Thus we are able to create a graph 
network structure for the entire river system: each node represents the 
local flow Q due to local precipitation, which when combined with other 
local flows generate Qtotal. The building blocks of this network structure 
is shown in Fig. 4. During training, the nodes are trained upon a ran
domized selection of streams from WRF-Hydro, using the average pre
cipitation over the grid points where the stream flows through. 

Initially, we recognize there are two types of streams: headwaters 
and non-headwaters. Headwater nodes are essentially where the entire 
streamflow network “begins”, and thus have no input flow apart from 
possible groundwater and minute sources (which we ignore), whereas 
all other nodes are non-headwater. The distinction is important since 
WRF-Hydro does not report Q for headwater nodes, and thus their 
output must be inferred. Continuing to organize the entire streamflow 
structure, we separate the types of inflow combinations into three types: 
HH, NH, or NN, where H represents headwater nodes and N represents 
non-headwater nodes (i.e., NH would represent a non-headwater node 
combining with a headwater node). The difference between these three 

combinations is mainly due to the training structure: HH will require 
three sets of inputs, NH will require two sets of inputs, while NN will 
only require one set of inputs. In addition, HH will only require Qtotal for 
the downstream node, while NH and NN will also require WRF- 
generated Qtotal values for the respective upstream nodes during 
training. Continuing this logic, one can construct the entire stream flow 
network from these basic building blocks as a graph network, shown in 
Fig. 5. Here we make an important definition: the order of a stream node 
is the maximum distance of the node to any headwater node, including 
itself. Thus, as the network flows downstream, the order continuously 
increases, with large rivers associated with higher-order values. 

Each stream node is modeled as an LSTM block containing 128 fil
ters, followed by 2 dense layers of filter sizes 16 and 1, respectively, 
applied upon the LSTM output, shown in Fig. 6. In total, this constitutes 
71,201 total trainable parameters, a total of roughly 300 kB in size. It is 

flood.val new = flood.val old+
(

precip.obs
precip.mod

− 1
)
(
1.746*flood.val old + 5.63x10− 4*DA − 3.6x10− 2*refkdt + 4.26x105*ksat

)
,

for
precip.obs
precip.mod

≥ 0.5

(6)   
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also important to note that all stream nodes are represented as identi
cally structured LSTMs across all types of stream flow structures. The 
reasoning behind this is to only require saving one set of variables that 
can be applied across all stream flows (being as general as possible), 
while keeping the overall memory and computational requirements 
manageable. However, due to the availability of output data (recall that 
WRF does not produce Q for headwater nodes), training the LSTM is 
accomplished by considering the three types of stream flow structures 
separately, each with its own appropriate number of inputs & outputs. 
For example, the case with no headwaters is arguably the simplest, as 
both Qtotal u1 and Qtotal u2 from upstream nodes can be taken directly 
from WRF, and only one set of inputs is required for the node to generate 
its own Q before summation and comparison to the WRF output Qtotal. 

The LSTM we applied consists of 40 time steps (i.e., 10 h at 15-min 
time steps) for the purposes of training, starting from an initial condi
tion of no precipitation and ideally no (or low) stream flow. Theoreti
cally, we are not limited to a set number of time steps, since we can 
continue to add LSTM nodes per additional timestep as necessary. We 
randomly select portions of the entire stream flow network during 
training, taking note and feeding relevant stream parameters into its 
corresponding stream flow structure. All inputs are normalized against 
their respective maximum and minimum values, such that they ideally 
range from − 1 to 1. The only exception here is Q, since the summation of 
two negative values will yield a larger negative value, and so it is instead 
normalized from 0 to 1. The final error is defined as the difference be
tween the WRF generated Qtotal and the LSTM model-generated Qtotal. 

Table 2 
Inputs and outputs to each stream node in the LSTM model.  

Inputs Outputs 

Stream parameters 
(network) 

Precipitation – P  Stream Length - L  Stream Slope – 
S  

Drainage area – 
A  

Q – Flow 
rate  

Domain parameters used 
(grid) 

Saturated soil hydraulic conductivity - 
dksat 

Parameter in surface runoff parameterization - 
refkdt     

Fig. 4. Basic stream network structures 
during the LSTM training process (2 head
waters, 1 headwater, or no headwaters). 
WRF always outputs Qtotal values, and so 
does not exist when the upstream node is a 
headwater node. The output Qtotal is derived 
from summing the output of all upstream 
nodes and the current node. In the case of 2 
headwater nodes, all inputs must pass 
through their respective node networks 
before the summation, while non-headwater 
nodes can proceed with training by taking 
Qtotal directly from WRF. Note that all stream 
nodes are identical within the LSTM struc
ture, and hence must be able to capture a 
variety of scenarios given appropriate inputs.   

Fig. 5. Sample graph network representation of stream network, consisting of combinations of headwater and non-headwater nodes. Each stream node is represented 
as an LSTM + associated dense layers. Order is defined as the maximum distance of the current node to any headwater node. 

Fig. 6. Detailed representation of a stream LSTM node, consisting of an LSTM 
and 2 dense layers. 
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Since the problem is one of regression, we tested both mean squared 
error as well as absolute squared error as error metrics. During predic
tion, we added an artificial lag of one timestep (15 min) to the downflow 
Q during summation for every five stream nodes, such that it mimicked 
the nature of downstream flow. Although this is a simplification, 
encoding such a step within the LSTM would require training a larger 
LSTM that can capture this type of delay as well as scaling flood flows 
accordingly between two very different streams. As such, we opted for a 
simpler solution here that does not require additional training. 

3.4. Simulation setup 

To assess the prediction accuracy of the update models (regression 
and LSTM), we must first standardize the method in which we discretize 
the landscape from the satellite’s perspective. The regression model is 
run for every modeled stream reach based on average observed pa
rameters (i.e., precipitation, saturated hydraulic conductivity (ksat), 
infiltration parameter (refkdt)) in the contributing watershed. Similarly, 
every stream reach is treated as its own LSTM neural network. While this 
can yield detailed results, the satellite needs to be scheduled to point 
toward a vector of spatial points at scheduled times. The landscape is 
therefore discretized into equally spaced, regular grid cells (of a size 
comparable to the satellite’s field of view). We assigned the stream 
reach-based predictions of flood magnitude from the regression and 
LSTM models to the appropriate grid cell (or cells) nearest to this reach. 
If more than one stream reach intersects a grid point, the highest pre
dicted flood value is used. These grid-based flood values would then be 
sent to the satellites to inform where to make future observations. Note 
that satellites can only observe the amount of precipitation falling over 
an area, and thus must infer the flow rate Q from models. We created an 
initial precipitation forecast for the region (and subsequent flood fore
cast from WRF-Hydro) but with every observation in space and time, this 
precipitation map is updated and fed to either the regression or LSTM 
model to predict new river flood values. 

The stream network consists of a total of 7,013 reaches, spread over a 
total of 79 × 79 high resolution grid cells (0.9 × 0.9 km) (Fig. 7). The 
satellite is scheduled to observe a low-resolution version of the area with 
approximately 8 × 8 km cells, thereby the entire map is spread over 11 
× 11 grid cells. When the satellite observes one of these 11 × 11 grid
points, all high resolution gridpoints within the larger satellite obser
vation area observed (and may have different precipitation rates). 
Satellites may be scheduled to observe a varying number of grid cells 
each time they pass over an area, as well as varying timing between 
these observation cycles. Since we treat every 15 min as one timestep 
within our forecast simulation, the highest observable scenario is one in 
which every one of the 121 grid cells are observed every 15 min. Varying 
these observational parameters, we discretize our simulation to observe 
a varying 30, 50, 75, 100, or 121 grid cells per observation cycle, with 
observation intervals occurring either 15, 30, 60, 120, or 180 min apart. 
Observed grid cells were randomly selected, but remained consistent 
among all models tested. The lower bound of sampling frequency is 
limited to once every 3 h because ground stations of commercial satellite 
constellations are able to establish space-ground contact between their 
assets every 4–6 h, and we wanted to demonstrated the benefits of on
board autonomy if updates can be made at higher frequency. 

The prediction accuracy of the simple regression and machine 
learning approaches was assessed based on precipitation observations at 
the various number of grid cells and observation cycles. These two ap
proaches were also compared to flood forecast updates using the WRF- 
Hydro model at these same update frequencies (e.g., these updated 
precipitation forecasts were fed through the WRF-Hydro model to 
generate new flood forecasts at each time step). These tests were run on 
the same April 5–6, 2017 rainfall event used in the WRF-Hydro cali
bration. The NLDAS precipitation data was taken to be the “true” pre
cipitation values for this event. We developed a synthetic initial forecast 
of precipitation for this event by perturbing the “true” values using a 
Gaussian random filter. Both these precipitation data were run through 
WRF-Hydro to yield a “true” flood scenario and an initial flood forecast 

Fig. 7. Schematic showing the coarse 11 × 11 grid the satellite observes (top), the fine 79 × 79 grid that WRF-Hydro is run on, and the underlying stream network. If 
a satellite observes precipitation in one grid cell (red), it observes precipitation in all the underlying fine grid cells. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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(Fig. 8). The error between the forecast and “true” flooding is the initial 
error. The simple regression and LSTM update approaches should then 
reduce this error by incorporating different amounts of observed “true” 
precipitation. Areas that were not observed by the satellite are assigned 
their initial forecasted precipitation values. We applied our update 
methods to a 10 h period (April 5 10:00 – April 5 20:00) where most of 
the flooding occurred. 

Error was quantified based on differences in predicted and true 
categorical flood magnitudes based on NWS flood categories (Eq. (5)) as 
well as calculated flood values (Qm/Q2). Using normalized values is 
useful when comparing streams of different sizes and behaviors, since 
large rivers will consistently have higher flow rate Q when compared to 
smaller streams. Furthermore, using flood categories allows us to 
generalize the importance of different degrees of flooding, while 
ignoring the smaller errors that exist within the prediction of the raw 
stream flow itself. Finally, flood categories are most representative of 
the severity of flood impacts and are standard forecast communication 
tools used in the U.S. While categorical data should generally not be 
treated as numeric, flood categories are ordered and are nearly linearly 
related (Eq. (5)). Computing average categorical errors (see below) is 
therefore an appropriate and useful metric for comparing performance 
between our models. 

These errors can be calculated on stream-based or grid-based results. 
Stream-based error is calculated for every stream reach simulated in the 
model. Grid-based error is calculated based on flood values assigned 
from these modeled stream reaches to the 79 × 79 model grid. Both 
stream-based and grid-based error is calculated as follows: 

E(x, t) =
⃒
⃒
⃒
⃒F̂x,t − Fx,t

⃒
⃒
⃒
⃒ (8)  

where E(x, t) is error and F̂ and F represent the predicted (e.g., LSTM) 
and real categorical or numeric flood values, respectively. This provides 
error for every location (x, either stream reach or grid cell) and time step 
(t). We can also average error over time and/or location. Mean flood 
error at each time step can be calculated as follows: 

E(t) =
1
N

∑

x

⃒
⃒
⃒F̂x,t − Fx,t

⃒
⃒
⃒ (9)  

where N is the total number of stream reaches or grid cells. We can 
average across both space and time to get a single error metric for a 
given model scenario. This mean flood error is calculated as: 

E =
1

TN

∑

t

∑

x

⃒
⃒
⃒F̂x,t − Fx,t

⃒
⃒
⃒ (10)  

where T is the total number of prediction cycles. We use this average 
error metric to compare model errors across different satellite observa
tion parameters (i.e., number of cells observed and observation fre
quency). 

4. Results 

4.1. WRF-Hydro model calibration and validation 

The WRF-Hydro model was calibrated to match observed hydro
graphs from nine USGS stream gages in the Atlanta metro area for a 
storm event on April 5–6, 2017. Mean NSE was 0.33 and mean percent 
bias was –32% (Fig. 9). Modeled flows matched observed flows well for 
some gages, but under- or over-predicted peak flow rates at others. 
Gages with multiple peaks were reasonably well captured by WRF- 
Hydro. Validation performance was similar (June 20–21, 2017 storm 
event), with a mean NSE of 0.51 and percent bias of − 42% (Fig. S1). In 
both the calibration and validation, negative bias indicates a consistent 
under-prediction of discharge. This is primarily because the model 
seems to be under-predicting runoff volume (i.e., area under the 
hydrograph) even if the peak flow rates were relatively well simulated 
for most sites. Model errors may be a result of simplifications in the 
model itself or incorrect parameterization. WRF-Hydro is a relatively 
coarse scale model (30 × 30 m resolution for overland flow routing) and 
we do not incorporate any stormwater infrastructure, reservoirs, or 
other complexity in this highly urban area that affects runoff rates and 
volumes. Additionally, the under-prediction of runoff volume may 

Fig. 8. Schematic of the relationship between rainfall 
data and flood prediction for a single time step. 
“True”/Obs precipitation is from NLDAS and initial 
rainfall forecast is an artificially perturbed version of 
these data. Each of these precipitation time series are 
run through WRF-Hydro to generate “true” flood 
values and an initial flood forecast. For the satellite 
prediction system, the satellite observes some subset 
of this “true” precipitation. This is combined with the 
initial rainfall forecast data for areas not observed by 
the satellite and fed to the update models (regression, 
LSTM, and WRF-Hydro) to create an updated flood 
forecast for that time step. If no precipitation is 
observed by a satellite in a given time step, the initial 
rainfall forecast is fed to the update models.   
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suggest that too much infiltration is being simulated. However, addi
tional tuning of calibration parameters did not result in significantly 
improved model performance. 

Despite this systematic under-prediction of runoff volume and errors 
in the absolute value of flood peaks, the calibrated WRF-Hydro predicts 
the relative magnitude of flooding for most gages. The model captures 
where high flows occur and where they do not (especially visible in the 
validation results), which is important for our interests of determining 
when and where floods are occurring. Although accuracy would ideally 
be higher, these model results still serve as a useful realistic test case for 
comparison to our proposed flood forecasting methods. 

4.2. Flood forecast update performance 

We compared the performance of the simple regression model up
date and the LSTM update approach to the performance of the WRF- 
Hydro model for forecasting flooding for the April 5–6, 2017 storm 
event. The accuracy of the flood update function generally improved as 
more precipitation data were incorporated (Fig. 10). The grid-based 
categorical flood error (averaged over space and time) decreased as 
the spatial and temporal coverage of satellite-observed precipitation 
increased. Overall improvement, however, was small for the regression 
model update, especially if 50 or fewer grid cells were observed. The 
WRF-Hydro update, as expected, showed considerable reduction in 
flood errors, especially as more observed precipitation data were 
incorporated. The LSTM update showed moderate error reduction, with 
much better performance than the regression update but not as good as 
the WRF-Hydro update. Fig. S2 shows similar results, but using mean 
flood value (Qm/Q2) error instead of flood categories. The error re
ductions are lower for both the regression update and LSTM update 
using this metric, but the general trends are the same. 

We also examined how error changes over the course of the simu
lation (i.e., averaged over space, but not time). Fig. 11 shows grid- 

averaged flood categorical error over time for different update fre
quencies, if all 121 grid cells are observed by the satellite. All update 
approaches showed little error initially, with a peak around time step 23, 
which coincides with the greatest observed/modeled flooding across the 
study domain. The full WRF-Hydro update displayed the lowest error, 
especially as more observed precipitation data are incorporated (15-min 
update frequency). The simple regression update only marginally 
reduced error, although the improvement from the no update scenario 
was highest at the flooding peak, where reducing error was the most 
important. Notably, there was a small spike in error around time step 10, 
where the regression update was forecasting flooding before it actually 
occurred. Since the update function used a precipitation ratio, it was 
sensitive to small differences in precipitation that may have resulted in a 
large ratio. Again, the LSTM update performed better than the simple 
update, but cannot reduce error as much as the full WRF-Hydro update. 
For all updates, error increased as more precipitation falls, but decreased 
again once precipitation (and flooding) abated. 

While the results shown so far are all averaged across all grid cells 
(because the satellite breaks the landscape into a grid for observation), 
the update methods themselves are applied to stream reaches. Looking 
at categorical (Fig. 10, bottom) and numeric (Fig. S2, bottom) flood 
error averaged over time and all modeled stream reaches shows slightly 
better performance for the LSTM update, compared to the grid-based 
results. The maximum error reductions (i.e., lowest error value from 
Fig. 10 compared to no update) using this stream-based averaging was 
9% for the regression update and 38% for the LSTM update. These are 
slightly better than the maximum error reductions using the grid-based 
averaging (8% for the regression update and 30% for the LSTM update). 
Maximum error reduction for the WRF-Hydro update was slightly better 
for the grid-based averaging (99%) compared to the stream-based 
averaging (95%). 

Since the LSTM update approach performed better than the regres
sion update, we will examine this approach in more detail. Since our 

Fig. 9. WRF-Hydro calibration results comparing measured and modeled discharge for nine USGS gages. For validation data, please refer to the Supplemental 
Materials (Fig. S1). Gage numbers and names shown along with watershed areas. NSE and PBIAS are shown for each gage, as well as average values for all gages. 
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Fig. 10. Grid-average (top) and stream-averaged (bottom) flood categorical error (Eq. (10)) for different update frequencies and spatial scales for the simple 
regression model, LSTM model, and WRF-Hydro update. 

Fig. 11. Grid-averaged flood category error over time for the three update approaches at different update frequencies. All data are for the scenarios where pre
cipitation is observed at all 121 grid cells. Bars at top show average “true” precipitation depth across the whole modeled grid to illustrate the general temporal pattern 
of the storm. 
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error metrics are based on categorical flood values, it was useful to 
construct a confusion matrix of the LSTM update results for both stream 
and grid-based results (15 min update frequency, all 121 grid cells 
observed), shown in Fig. 12. The LSTM correctly classified flood cate
gories for 81.7% (stream-based update) and 85.8% (grid-based update) 
of cases. If we assume that it was acceptable to be at most one flood 
category off from our predictions for satellite tasking purposes, we can 
recalculate our metrics for only situations when a flood was actually 
occurring (since the majority of streams over most of the time had no 
flooding). Using this approach, the LSTM model had an accuracy of 
89.8% (stream-based update) and 96.3% (grid-based update). That is, 
the LSTM approach accurately predicted flooding within one category 
for at least 90% of cases (time steps and locations). 

However, the accuracy of the LSTM approach was not the same for 
all streams. Fig. S3 shows sample predictions from LSTM compared to 
WRF-Hydro outputs for low order streams (close to headwaters). The 
LSTM models tracked those of WRF fairly closely, as least for streams of 
lower order. The results tended to diverge for larger, higher order 
streams and rivers since they have different rainfall-runoff dynamics 
compared to small streams. 

To evaluate the ability of the LSTM to handle varying scenarios, we 
applied it to several artificial precipitation events. First, we doubled the 
amount of observed precipitation from the base test case (April 5–6, 
2017 event) (Fig. S4). Although the error increased compared to the 
original case, the average categorical error was still relatively low. 
Similarly, we also applied the LSTM to a case where input precipitation 
was ½ of the original. Error overall is lower (Fig. S5) likely because 
flooding magnitude was also lower. The LSTM performs particularly 
well if it has the most possible precipitation data (15-min update fre
quency, yellow lines). Both of these cases are for the same basic storm 
event that the LSTM was trained on (albeit with different total amounts 
of rainfall). 

We also applied the LSTM to the June 20–21, 2017 storm event that 
was used to validate the original WRF-Hydro model (and which was not 
used at all to train the LSTM). For this storm event, the LSTM approxi
mated the WRF-Hydro hydrographs in most cases (Fig. S6). Looking only 
at the categorical predictions, the results show it performed almost 

identically to WRF-Hydro. The mean absolute categorical error of the 
LSTM method (LSTM prediction compared to the observed gage) was 
0.37, identical to the WRF-Hydro error. At most, the LSTM predicts flood 
categories no worse than that of WRF, at a fraction of the runtime. 

5. Discussion 

This paper builds out a predictor or forecast module for automated 
scheduling of satellite constellations, which can adaptively observe 
global urban floods caused due to transient precipitation events. Small 
satellites with precipitation radars can measure rain through space and 
time (e.g., RainCube), but they need to infer flood severity in observed 
locations in the absence of direct measurements. Forecasting flood 
severity is a key input to the satellite’s scheduler so that it can prioritize 
observations of areas with maximum flooding, for more accurate mea
surements, better understanding of the evolving phenomena, and 
thereby improved disaster management. The predictor module is 
important for adaptive sensing even when physical parameters are 
directly observable but dynamic (e.g., soil moisture) because future 
plans will be a function of the rapidly changing environment and their 
forecasts. 

We proposed and compared three tools for predicting flood severity 
across a metropolitan area using dynamic precipitation measurements 
by satellites – a simple regression-based update model, a LSTM machine- 
learning algorithm, and a fully distributed hydrologic model (WRF- 
Hydro) – for the purpose of forecasting and adaptive sensing. These tools 
range from low to high complexity and low to high computational cost. 
The simple regression model can produce flood updates quickly (on the 
order of seconds) but only marginally reduces error from an initial flood 
forecast. The LSTM produces much less error, but does require more 
computational time (on the order of minutes). Finally, the full WRF- 
Hydro has the least error, but has by far the highest run times (on the 
order of hours), which is currently infeasible for onboard satellite plat
forms. To update flood forecasts in real-time based on the latest avail
able precipitation data, it is important to balance performance (error 
reduction) with computational cost. This is especially important for 
running these flood forecast models on-board a satellite, which has 

Fig. 12. Confusion matrix for categorical results for streams (left) and grid (right). Each cell shows the number and percent of observations (stream or grid location 
for each time step) for each predicted and actual flood category. Green cells show accurate predictions. Row and column sums are shown in gray, with correct (green 
text) and incorrect (red text) prediction percentages. Although ‘no flood’ dominates the majority of the data, we note that for our purposes that as long as the 
predicted value is within 1 category away from its actual category, it is considered acceptable for satellite tasking. If there are no values in a cell then there were no 
observations with that combination of predicted and actual flood category. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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limited computational power. 
Given these competing constraints, it appears the LSTM approach 

represents an appropriate balance by providing reasonably accurate 
flood forecasts relatively rapidly. The simple regression update does 
have the lowest cost, but it cannot adequately reduce flood forecast 
error. This perhaps is not surprising since it is a relatively naïve 
modeling approach that attempts to relate changes in flood magnitude 
to only relative differences in cumulative observed precipitation (albeit 
with some adjustment for watershed characteristics). Complex rainfall- 
runoff processes are not mechanistically accounted for in this 
approach. The LSTM approach was also shown to be relatively robust, 
performing well when precipitation depth was increased and decreased 
(Figs. S4 and S5) and when applied to a different rainfall event than was 
used in model training (Fig. S6). For this validation event, the LSTM 
predicted actual flood categories with similar accuracy as WRF-Hydro. 
Percent error for WRF-Hydro (compared to gage-measured flood peak) 
was lower (median 7%) than for the LSTM (median 40%). Compara
tively, LSTMs used by other flood models (Kao et al., 2020; Le et al., 
2019) display maximum percentage errors of up to 28.2% and 50%, 
respectively, for 3 and 6 timesteps away from the point of prediction. We 
note that our LSTM does not have access to upstream inflows like these 
other models, and must predict 40 timesteps of highly dynamical flow 
scenarios over many different types of streams. Furthermore, the LSTM 
showed appreciable error reduction in predicting flood categories with 
increasing precipitation data (Fig. 10), even if numeric flood value error 
reduction was smaller (Fig. S2). Overall, these results suggest that the 
LSTM model can predict the general flood severity (as flood category), 
but has difficulty predicting the exact flood discharge. 

Comparing the confusion matrices (Fig. 12) of categorical error from 
the LSTM also yields some interesting insights: we note that for at least 
90% of relevant flooding cases, the LSTM predicts flooding that is at 
most one category away from the actual flooding category. While not 
perfectly accurate, most of the predictions are not far off from the actual 
event. The “no flooding” case does dominate our statistics, but is still 
important to the prediction effort. Given limited satellite passes and 
observation opportunities, it is critical that we do not overestimate 
flooding scenarios such that it diverts these resources away from areas 
that are flooding. From a flood warning perspective, on the other hand, 
it is better to overestimate a flooding case than the underestimate it, 
particularly for any category above ‘minor’ flooding. 

The LSTM did perform significantly better than the simple regression 
approach; however, it did not perform equally well across all streams. To 
visualize where error is highest, it is useful to split the categorical error 
per stream into their own order groups, shown in Fig. 13. It can be seen 
that as the streams turn into larger rivers, the error increases. The reason 

for this is twofold: first, because there are only a few large streams 
within the training data, the LSTM does a poor job of capturing the 
different dynamics that dominates the larger flows. Second, any error in 
the flow rate Q propagates downstream, compounding many small er
rors into several large errors, especially when thousands of small streams 
eventually flow into a few large rivers. As a result, the LSTM tends to 
overestimate the flow rate Q in larger rivers, since local precipitation has 
a smaller effect on these slow-moving streams than the faster flows 
encountered near headwaters. 

These challenges were also observed when training the LSTM on 
large rivers; because of the different dynamics between streams of 
different sizes, it was difficult for the models to converge (the weights 
would oscillate if one trained on small streams, then on large rivers, and 
vice versa). As a result, much of the training was focused on double or 
singular headwater flows (since these were most common). This works 
well even for non-headwater flows in the beginning, but eventually the 
errors accumulate, especially for downstream flows. To remedy this 
problem, we propose that separate LSTM models need to be trained 
depending upon the order of the stream in question. Additionally, 
summing tributary inflows, although simple, may be inadequate for 
predicting flows in larger streams. 

Quick and accurate flood prediction in smaller streams is more 
important to satellite adaptive sensing than in larger rivers. Small 
streams tend to respond quickly to rainfall, and this fast hydrologic 
response can be damaging but does not have the same breadth of flood 
forecasting tools as larger rivers (Gourley et al., 2017). Lag times for 
flooding in large rivers are longer, and therefore allows for more 
computationally intensive and accurate flood modeling to be run on 
ground-based computers and for adaptive sensing strategies to be 
uplinked to satellites during overpasses. On the other hand, rapid on
board updating of flood forecasts for small streams using satellite- 
derived precipitation could be extremely beneficial. 

Flood prediction accuracy increases with more observations of pre
cipitation for all three update methods, thereby quantifying sensitivity 
to the “adaptiveness” of adaptive sensing. We examined this effect both 
spatially (number of grid cells the satellite observed) and temporally 
(time between satellite observations). For the WRF-Hydro update, the 
satellite needs to observe over half of the available grid cells before we 
see significant reductions in error. In comparison, the LSTM seems to 
actually have greater error reduction at these low numbers of observed 
grid cells (for the grid-based errors at least), as long as observation 
frequency is high (Fig. 10). In our framework, observation scale and 
frequency are constrained by satellite availability. Our results are useful 
for scheduling satellite passes over the study area to obtain the necessary 
frequency and spatial distribution of precipitation to reduce error in 
flood forecasts below an acceptable level. Importantly, we quantify the 
value of recurring observations to overall predictive capability, and at 
what point additional satellite passes may have diminishing returns. 
This is especially relevant because parallel studies have shown that 
single satellite overpasses over the Atlanta urban region allow enough 
time to observe less than 30% of the grid cells (Sin et al., 2021), 
therefore predicting their relative value and scheduling to observe the 
most valuable areas maximizes mission value. This observation 
constraint is due to precipitation radars being narrow field of view 
sensors which can observe small fractions of Atlanta in a single image. 

The primary focus of this paper was the prediction module portion of 
Fig. 1; however, it is useful to provide more details of satellite constel
lation topologies as this is relevant to the results discussed above. Low 
Earth Orbit satellites are dynamic with respect to grid cells on the Earth 
and rain radars onboard can observe any ground point over an access 
duration of 10–15 min. It can take several days for a single satellite to 
revisit that ground point, depending on its orbit and latitude of the 
ground point. Flying a constellation of satellites improves revisit 
significantly, but with marginal benefits after a certain number. As 
discussed in a parallel study (Nag et al., 2019), a 24 satellite can provide 
revisits as frequently as every 15 min and a maximum gap duration of a 

Fig. 13. Mean stream-based categorical flood error over time per order group. 
Error tends to be low for streams near headwaters (low order) and increases as 
the streams turn into rivers (high order). 
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few hours, when arranged in 3 orbital plans. An example of revisit fre
quencies for different satellite constellations is shown in Fig. 14. A single 
plane constellation gives a minimum observation gap of 12 min, 
following by a long 10–12 h gap before the constellation can revisit the 
region of interest. Additional constellations decrease these revisit gaps, 
providing more relevant observation data. Small satellite companies 
have demonstrated commercial success in flying large constellations of 
satellites (Foster et al., 2018; Stringham et al., 2019) and commercial 
launch providers can deploy dozens of satellites as rideshare options (e. 
g., SpaceX). Reducing the satellites or orbital planes increases the time 
gap between revisits, allowing less frequent re-planning cycles based on 
the previously collected round of measurements. Therefore, we 
demonstrate the performance of the forecast models as a function of 
measurement update frequency varying from 15 min to 3 h in Fig. 10, to 
capture the variability of various constellation abilities make measure
ments at said cadence. 

Regardless of the observation frequency, the scheduling of satellites 
is based on conceptualizing the landscape as a grid. However, our up
date methods performed at least marginally better at the stream-reach 
scale, compared to the grid-based approach (taking the maximum 
observed flooding in each cell) due to the loss in information during the 
transfer. Supplying grid-based values makes the scheduling problem 
more tractable for satellites, but exploring the best ways to make this 
conversion to minimize errors is an important area of further research. 

The LSTM update approach can and will be applied to other regions 
to determine its applicability outside of our one model domain, so that 
the predictive models can be extended to global adaptive sensing. This 
would require training a new set of LSTMs based on regional topog
raphy, soils, stream network, and other local characteristics. As dis
cussed previously, LSTM approaches have been applied to forecast 
flooding in other regions (Kao et al., 2020; Kratzert et al., 2018; Le et al., 
2019). There is therefore growing evidence that the basic structure of 
LSTMs is suitable for flood prediction in a variety of situations. However, 
each of these models are trained for specific locations and it remains to 
be seen whether more generalizable LSTM models can be developed that 
can be rapidly applied to a variety of locations with minimal site-specific 
data and training. 

There are several opportunities to improve LSTM accuracy in future 
work. For example, we used a single LSTM model structure for all in
teractions between streams. One improvement would be to develop a 
separate LSTM model based on stream type (i.e., size or number of 
tributaries). Additionally, more model parameters could be incorpo
rated (e.g., more complex urban land cover and stormwater infrastruc
ture). In both cases, there is a risk of overtraining the models, reducing 
the ability to predict flooding for a variety of storm events. We 
attempted some of these approaches, including separating the double 
headwaters, single headwaters, and no headwaters scenarios into their 
own separate models, as well as including additional domain variables 
(i.e., elevation and flow accretion), but the results were on par with our 
original LSTM model. 

The results presented in this paper successfully demonstrate the 
development of methods to accurately predict riverine flooding using 
space-based measurements of precipitation and an approach that could 
be run on-board a satellite constellation. This has some major advan
tages over more computationally intensive and centralized approaches 
for updating predictions of flood events, which is especially important in 
regions without ground-based precipitation and streamflow sensors (as 
long as sufficient data are available to train a LSTM model). The pro
posed approach deserves further testing to determine when and where it 
can replace or complement existing flood forecasting approaches. Our 
results also add to growing evidence that machine learning approaches 
in general (Yaseen et al., 2019) and LSTM in particular (Kao et al., 2020; 
Kratzert et al., 2018; Le et al., 2019) are promising methods for accu
rately and efficiently predicting river flows and flooding without the 
need for data-intensive and computationally demanding process-based 
modeling. 

6. Conclusion 

This paper proposes two simplified flood forecast models that are 
computationally efficient enough to run onboard a constellation of sat
ellites – providing an approach to prioritize where satellite-observed 
precipitation data will be most informative during ongoing flood 
events. We show that one method, the LSTM model, is able to mimic the 
more complicated, physics-based WRF-Hydro model relatively well, 
correctly classifying flooding within one flood category in 90% of cases. 
The LSTM approach runs orders of magnitude faster than WRF-Hydro, 
making it more suitable to run quickly on-board resource limited sat
ellites. Additional testing showed the LSTM model was robust to changes 
in precipitation and associated flood severity. Finally, we demonstrated 
continuous reductions in flood prediction error as the spatial extent and 
temporal frequency of satellite precipitation observations increased. 
These findings together suggest that LSTM models are appropriate for 
informing responsive scheduling of satellite constellations – directing 
these satellites to observe precipitation where it will be most useful for 
updating flood forecasts during an ongoing flood event. Future work can 
help refine this approach and develop more general LSTM models that 
are applicable beyond our study region. 
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