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Abstract 
We present planning challenges, methods and preliminary results 
for a new model-based paradigm for earth observing systems in 
adaptive remote sensing. Our heuristically guided constraint opti-
mization planner produces coordinated plans for multiple satellites, 
each with multiple instruments (payloads). The satellites are agile, 
meaning they can quickly maneuver to change viewing angles in 
response to rapidly changing phenomena. The planner operates in 
a closed-loop context, updating the plan as it receives regular sen-
sor data and updated predictions.  We describe the planner's search 
space and search procedure, and present preliminary experiment 
results. Contributions include initial identification of the planner's 
search space, constraints, heuristics, and performance metrics ap-
plied to a soil moisture monitoring scenario using spaceborne ra-
dars. 

Introduction 
 Agile and maneuverable satellites provide an opportunity 
for rapid and direct coupling between model updates and 
planning new observations to improve the models based on 
a model quality metric. NASA calls this new paradigm 
which extends the concept of Sensor Webs (Mandl et al., 
2006) to model-driven observation planning, New Observ-
ing Strategies (NOS) (Le Moigne et al.) We present the plan-
ning component for one such NOS, called Distributed 
Spacecraft with Heuristic Intelligence to Enable Logistical 
Decisions, or D-SHIELD (Nag et. al. 2020, 2021).  
 Missions in the past have physically re-pointed single in-
struments given ground-commanded waypoints (CHRIS on 
Proba (Barnsley et al., 2004)), 3-DOF imaging for Planet’s 
Skybox spacecraft (Augustein et al., 2016), and EO-1 re-
tasking for monitoring of floods (Chien et al 2019), volca-
noes (Chien et al 2020), and wildfires (Chien et al 2011). 
Missions without physical agility have also shown to benefit 
from reactive planning to prioritize hyperspectral data col-
lection, such as IPEX which served as the HyspIRI path-
finder (Chien et al., 2016) and the future EnMAP (Worle et 
al 2014, Fruth et al 2019), and to inform operational param-
eters like electronic beam steering to optimize radar looks, 
such as TerraSAR-X (Werninghaus and Buckreuss 2009) 
and TanDEM-X (Krieger et al 2007). Power and bandwidth 
restrictions on small spacecraft has spurred literature on 
scheduling data download (Jian and Cheng, 2008) and use 
of crosslinks to propagate planning information via space 
nodes (Linnabary et al., 2019) however these tools are opti-
mized only for data downlink without a science-driven ob-
servation scheduler in the loop.  

 D-SHIELD's planner may be the first to create coordin 
ated plans for multiple physically agile satellites, each with 
multiple instruments (payloads) and explicit models of 
measurement errors applied to global soil moisture estima-
tion, using an architecture that is flexible between on ground 
and onboard. The planner operates in a closed-loop context, 
updating the plan as it receives regular sensor updates from 
the rest of the constellation, other space assets (e.g. SMAP, 
CYGNSS satellites) or in-situ ground networks (e.g. SoilS-
cape).  While our previous work has showed science-in-the-
loop planning for single sensors per satellite in a constella-
tion (Nag et al., 2019), this application domain with multiple 
payloads heterogeneously spread in a constellation has not 
previously been defined in formal planning terms. We de-
scribe the planning challenges and solution, detailing the 
search space and search procedure, and present preliminary 
experiment results. Contributions include initial dentifica-
tion of the planner's search space, constraints, heuristics, and 
performance metrics. 

Problem Description 
D-SHIELD uses a (proposed) constellation of satellites 
looking at Earth to reduce global soil moisture uncertainty 
by making observations that target spatio-temporal points of 
rising prediction error, which accurate data can alleviate. 
Such uncertainty reduction benefits accurate models for 
floods, wildfires, vegetation drydowns, etc. The overall goal 
is to demonstrate a system which continually updates a hy-
drologic land surface model with external forcing functions 
(e.g. precipitation) and dynamically schedules new observa-
tions to improve the model where the error is greatest, such 
as right after rain occurs, or places which have not been ob-
served recently, using instrument parameters that minimize 
retrieval errors. The dynamic soil moisture model detects re-
gional model quality degradation in near real-time and pro-
vides input to the planner about the highest priority ground 
positions (GP) to observe next from a science perspective. 
This paper focuses on the D-SHIELD planner more than the 
science model.  
 Each satellite in the constellation includes at least 2 dif-
ferent radar instruments (L-band and P-band) to take images 
of ground positions (GP). Each image typically covers mul-
tiple GP. Each satellite has a set of access times when it can 
view various GP, based on its orbit. These access times are 
called timepoints (TP).  The planner must decide which 
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satellites look at which GPs, at what times, with which in-
struments using which available viewing angles.  
 An "observation" may involve a single instrument at a 
single TP or may combine both instruments and/or multiple 
observations of a GP at separate times to improve the quality 
of the soil moisture model. For any observation, soil mois-
ture can be retrieved from the radar measurements and is 
expected to reduce the predictive uncertainty around the soil 
moisture of the observed GPs.  
 Explicit Error Model: D-SHIELD uses high-fidelity mod-
els of spacecraft and soil moisture dynamics, combined with 
a constraint satisfaction planner to generate new observation 
plans for all satellites in the constellation with the objective 
of improving model quality. Model quality is inversely pro-
portional to the model error associated with each GP. Model 
error for each GP is a combination of a given prior model 
error (predictive uncertainty) and measurement error (soil 
moisture estimate retrieval error) from new observations. 
Model error increases over time without new observations 
and increases when rain occurs. Measurement error is a 
function of which instrument (L-band or P-band) is used, the 
viewing angle, the type of ground cover (e.g., barren, shrubs, 
forest, croplands), and some other ancillary parameters. For 
example, if a P-band measurement does not improve errors, 
the planner may decide to forego it and conserve battery 
power in an eclipse.  
 Constraints: The planner must enforce the constraints: 
 Image Lock - Each observation requires the instrument to 
hold its viewing angle for 3 seconds so that a stripmap image 
can be created. This blocks out slewing to another viewing 
angle during that 3-second image lock period. 
 Duplicate observations - We do not look at the same po-
sition twice in the same 24-hour period to cover more unob-
served locations. There are exceptions for serendipitous 
cases when we aim at one GP but capture others in the same 
image, and for intentional cases when we plan a follow-up 
observation. 
 Maneuver constraints (slew time and energy) - The satel-
lite must slew to change viewing angles. There are con-
straints on how quickly it can change viewing angles, de-
pending on the slew magnitude. Changing viewing angle 
takes a different amount of time and energy depending on 
the combination of initial angle and target angle. This is 
called the slew time constraint. Energy consumption is also 
dependent on the slew magnitude. The planner must ensure 
there is enough time to slew between each observation and 
track the energy consumed by each slew to enforce a mini-
mum energy level constraint. 
 Energy model and constraints - The planner must track 
energy models for each satellite independently to ensure en-
ergy remains above a 70% minimum charge level to pre-
serve battery health.  Energy is consumed at a steady rate 
whenever an instrument is on (taking images) plus a variable 
amount of energy is consumed with each slew. The charge 
level is increased at a steady rate by solar panels, except dur-
ing eclipse when the charge is not increased.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 Figure 1 shows the D-SHIELD system. The solid lines 
show the closed-loop control flow while the dashed lines 
show external data sources used to update the model. The 
process is initialized with inputs based on the satellite orbits 
and specifications for the spacecraft and instruments, which 
are used to determine available observation times, along 
with slew time and energy requirements.   Those raw inputs 
go through pre-processing to generate the planner input 
files. The planner searches through the space of all available 
observation times and decides what to look at, when to look 
at it, and how to look at it. The planner produces a sequence 
of commands for the Controller to execute (command the 
instruments to take the images). 
 The (simulated) Controller collects the observation data 
and passes that to the Soil Moisture Simulator, to update the 
model based on the new observations. The Soil Moisture 
Model is a dynamic database which maintains a record of 
the current model error for each GP.  
 The planner's job is to create a coordinated multi-satel-
lite observation plan which improves the model quality by 
observing the GP with the highest model error using meas-
urements with the least error. Each plan step is an observa-
tion command of the form <time, instrument(s), viewing an-
gle>, which specifies the time when one or both instruments 
will take images at the given viewing angle.  
 Measurement Error Table: Planner input includes an 
error table which defines the expected measurement error 
for any combination of instruments and viewing angles, 
which the planner minimizes when choosing commands.  
 Follow-up observations. The planner may choose to 
have a satellite take multiple images of same GP to mini-
mize error.  Examples include:  

Figure 1: D-SHIELD architecture 
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• Same instrument at different times (at the same or dif-
ferent angles) 

• Both instruments at the same time (at the same angle) 
• Both instruments at different times (may involve dif-

ferent orderings of the instruments) 
 Choices involving a follow-up observation within 2 hours 
are considered a single observation by the science model be-
cause it can combine several observations within up to 2 
hours to reduce speckle noise in the soil moisture estimation 
retrieval.  Scheduling a follow-up means sometimes a 
choice about what to do at one time requires reserving a 
timeslot in the future, placing constraints on a future TP.  In 
these cases when we explicitly want to observe a GP twice 
at different times, the planner must choose the ordering for 
the viewing angles. This is an exception to our default con-
straint of no duplicate observations, driven by the measure-
ment error table indicating that the follow-up image will sig-
nificantly reduce error.  
 Continual re-planning: D-SHIELD is designed to run it-
eratively and continually. Each planning iteration generates 
a plan for 6 hours (configurable), after which the plan is ex-
ecuted, producing new measurements. New observations are 
passed to the soil moisture simulator (Nag et al., 2021) 
which assimilates the data and updates predictions of soil 
moisture uncertainty across all GPs in the future.  
 Planner challenges: The GP search space is large, with 
1,662,486 GP total across all land areas that are not urban, 
frozen or wetlands. The combinatorics grow due to the large 
number of choices for how and when to view each GP. This 
includes different combinations of satellites, times, instru-
ments, and viewing angles.  The examples in this paper in-
volve 3 satellites, but we plan to add more.  
 For 3 satellites over a 6-hour period, the constellation sees 
a total of 1,062,777 GP distributed over 29,700 TP. Each 
satellite can see an average of 354,259 GP, distributed over 
an average of 9,900 TP. Each satellite has 2 instruments, 
each instrument may be used at 62 possible viewing angles. 
Instruments may be used independently or in various com-
binations, resulting in an average of 51 command 
choices/TP with high variance, including a maximum of 108 
command choices/TP. Since each satellite has about 10,000 
TP (imaging opportunities) with an average of 51 command 
choices per TP, there are approximately 500,000 options to 
consider for each satellite. 
 Another key challenge is that the instrument command 
search space (defined by orbits and instrument command 
choices) is different from the science search space (defined 
by error-dependent utility associated with each plan). Plan-
ner output must be a sequence of commands from the com-
mand search space, but the value of the plan is defined by 
the science search space.  
 Contributions of this work include initial identification, 
quantification, and qualitative characterization of these two 
different search spaces (TP choices and GP choices) along 
with providing an initial integration between them.  

 Each stripmap image by the Synthetic Aperture Radar 
(SAR) covers several GPs, that are organized in approxi-
mately a 9 km x 9 km grid, that represent the data products 
of the SMAP mission, a soil moisture flagship mission. 
While each GP is a single <latitude, longitude> point, every 
observation captures multiple GP, each with its own model 
error.  
  The highly non-linear constraints on slewing and valid 
instrument combinations present another challenge. We ini-
tially started with an MILP formulation but complicated 
constraints in our time-sliced state model formulation 
proved challenging. We switched to this constraint pro-
cessing approach but may revisit the MILP formulation.  

Solution 
Preprocessing: We start with a preprocessing phase to dis-
till disparate raw data sources into streamlined planner in-
put. The preprocessor prepares the data for the planner by 
producing files which are structured specifically to define 
the planner's search space. Preprocessing consolidates, 
reformats, and compresses the following heterogeneous raw 
input data sources.  
• GP definition file:  The planner reads in a file defining 

1,662,486 GP along with their biome types (e.g., forest, 
grasslands, shrubbery, ocean).   

• Payload access time files specify the times when each 
payload for each satellite can view each GP, based on 
satellite orbits. This file contains tuples of the form: 
<TP, instrument, viewAngle, GPs>, where GPs is the 
list of GP in the field of view for the given instrument 
and viewing angle at the given time TP. 

• Rain files specify the GP where rain was recently ob-
served, along with where and when rain is predicted. 

• Saturation files specify GP which are already saturated 
with water. 

• Measurement error files specify measurement errors as-
sociated with each combination of instruments and 
viewing angles, for each biome type, as a tuple: <in st1, 
viewAngle1, inst2, viewAngle2, biomeType>. 

• Slew file specifies time and energy required to slew 
(maneuver) between all viewing angle combinations.  

Preprocessing removes redundancies from the raw inputs 
which are produced by multiple independent and heteroge-
neous systems and removes data from the raw inputs which 
are not required by the planner. A key part of pre-processing 
is a step called choice flattening which eliminates redundan-
cies in the raw input. This eliminates about 66% of the initial 
(redundant) choices found in the raw input data, which spec-
ifies each GP's command choices independently, rather than 
grouping the commands by TP. 
 Preprocessing produces multiple files, defining two 
search spaces which must be integrated during planning 
(Figure 2). There is a separate TP choice file for each satel-
lite (because each satellite covers GP at different times, and 
each executes an independent command sequence), but a 
single GP choice file for the whole constellation.  



 

 

 

 
 Figure 2 shows the two file types produced by prepro-
cessing which are the planner inputs. The TP choice file 
(top) defines the timepoints (TP) when some GP is visible. 
There is one TP choice file for each satellite because each 
satellite covers GP at different times, and each executes an 
independent command sequence. The Time column identi-
fies unique TPs when the satellite can see at least one GP. 
Each TP corresponds to a decision variable in the planner's 
search space, and the command choices for that TP corre-
spond to that variable's domain.  The planner decides which 
command to choose at each TP for each satellite.  
 In the TP choices file, each TP maps to a set of command 
choices, and each command is associated with a set of GP 
which will be covered by that observation. Command 
choices are denoted as <instrument(s), viewingAngle>. For 
example, L.32 means L-band at viewing angle 32. Note that 
a single command choice may actually involve two obser-
vations. The last command choice 'L33 & P.33' means both 
instruments (L and P) will take an image at angle 33 at the 
same time. Note that the planner may choose either L.33 or 
P.33 or both. All three will cover GP 3165, but with different 
measurement errors. The planner must choose a command 
for every timepoint when there is something to look at. This 
is the primary search space for the planner. It starts at the 

first TP and marches chronologically forward until it fills all 
available timepoints.  
 The other file is the GP choice file (bottom), which de-
fines all the choices for how to look at a specific GP. This is 
a GP-centric view which specifies which command choices 
are better from each GP's perspective. These GP choices are 
used by the planner for local heuristics to sort the command 
choices at each TP choice.  The local heuristics rank the 
command choices for each GP in order of increasing meas-
urement error.  These GP choices define different times and 
commands for viewing the same GP for all satellites. Each 
GP choice is associated with a different instrument error 
(which depends on that GP's biome type). These choices in-
clude all combinations of access times, instruments, and 
viewing angles.  Note that there are three choices to view 
GP 3165 at time 1311 at angle 32 by satellite 1, and another 
3 choices to view it at time 1259 at angle 33 by satellite 2. 
Each of these choices has a different measurement error.  
 
Heuristically Guided Constraint Optimization 
The planner creates an observation plan for a team of satel-
lites, each with two instruments. The planner output is a se-
quence of time-indexed commands for both instruments, for 
each satellite.    There are 3 command types: 
• TakeImage(<instrument1,viewAngle1> 

<instrument2,viewAngle2>). If both instru-
ments are used at the same TP, they must point at the 
same angle, but the planner may choose to use the in-
struments at different times (within 2 hours) in which 
case the angles may be different, and the planner may 
choose which instrument to use first. Each command 
takes 3 seconds to execute. 

• SlewToAngle(fromAngle, toAngle): This 
command takes a variable amount of time to execute 
depending on the initial and target angles.  

• Idle(): Turn off the instruments to save energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 shows an example of planner output for one of 
the satellites. This example says: From time 2 through 4, 
take an observation using the P-band at angle 48. Then re-
main idle for 10 seconds from time 5 through 14. Then use 
the L-band at the same angle 48 from time 15 through 17. 
Then there is a 23 second gap until the next observation at 

Timepoint (TP) choices: Command choices and times 
for viewing each GP (per satellite) 

• Command search space 
• One file for each satellite 

  
cmd 

Time     choices        GP covered by choice 
1311:      L.32:                   [3165]               
                L.34:                   [3445, 3446]    
                P.32:                   [3165]                
                P.33:                   [3165]               
                P.34:                   [3445, 3446]    
                P.35:                   [3445, 3446] 
               L.32 & P.32:       [3165] 

Ground Position (GP) choices:  
• When & how to view each GP  
• Science-return search space used in local heuristics 
• Measurement error depends on GP biome-type 

(shrub, forest, baren) 
• One file for whole constellation 

  
                                      cmd                measurement 

GP        satellite       Time           choices                    error 
3165:      1               1311              L.32                        .038      
                1               1311              P.32                        .017      
                1               1311              L.32 & P.32           .003      
                2               1259              L.33                       .032      
                2               1259              P.33                        .005      
                2               1259              L.33 & P.33           .024      
  
  Figure 2:  Preprocessing produces TP choice and GP 
choice files which are the primary planner inputs 
 
 

Figure 3:  Example planner output for one satellite 

Plan for satellite 1:    
   
 Time      Command  
    [2-4]          P.48  
  [5-14]           Idle  
[15-17]          L.48  
[18-36]           Idle 
[37-40]          Slew 
[41-43]          L.44   
[44-45]          Slew 
[46-48]           P.45  
  



 
 

time 41. The next observation is at a different viewing angle, 
so slewing is required, taking 4 seconds of that gap, ending 
at or before time 40, so the new observation may start at time 
41. 
  Planner Design: We are solving this as a Constraint Opti-
mization Problem (COP) (Dechter 2003), which is defined 
generically as: 
• Set X of variables {𝑥! , . . 𝑥"} 
• Set D of variable domains {𝑑! , . . 𝑑"} for each variable 
• Set C of constraints on legal variable combinations 
• Satisfiability requirement: Find a consistent set of vari-

able assignments for all variables for hard constraints 
• Optimization: maximize the preference rewards 
Our specific DSHIELD COP is defined as: 
 Problem:  Assign commands for every satellite for every 
TP when it can observe a GP. The TP when a satellite can 
observe a GP is called an access time.  There are too many 
GP to observe them all so this is inherently an optimization 
problem. The objective is to reduce the average model error 
by observing as many high-error GP as possible.  
 
Given Inputs from preprocessing (from files in figure 2): 
Let G = the set of all GP. 
Let 𝑔! ∈ G = the ith GP. 
Let 𝑒!,$	= the model error for 𝑔! at t. 
Let 𝑚!,&	= the measurement error for observing 𝑔! with 
command c.  
𝑑$' (defined formally as the domain for variable 𝑥$') is the 
set of commands available for sat s at time t.  
Let 𝑣',&,$= the set of all GP visible to sat s with command c 
at time t.    
 Note that model error 𝑒!,$	is a function of time, and in-
creases with time as prior data gets stale, and it increases 
with rain. When a new observation of 𝑔!is made, the model 
error 𝑒!,$		is set to the measurement error 𝑚!,&	.  
 
Decision Variables: We define a set of decision variables 𝑥$', 
each representing the command choice for sat s at time t. 
∀	𝒕	 ∈ 	𝑇	',   𝑇	'= {All access times (TP) for sat s}.  
  
Variable Domains: We define a set of variable domains 𝑑$' 
representing command choices for each 𝑥$'. The domain of 
choices for 𝑥$' is the set of all command options for sat s at 
time t.  𝑑$'	 ∈ 		{(<instrument1, viewAngle1>, <instrument2, 
viewAngle2>)} 
 In our example scenario, there are approximately 10,000 
variables per satellite corresponding to the 10,000 TP per 
satellite, and each variable has an average of 50 command 
choices in its variable domain.  
 Our hard constraints include the 3-second image lock, 
path-dependent slew time, and energy budget. Soft con-
straints (preferences) include (1) maximizing model im-
provement, (2) maximizing the # of high-priority GP ob-
served (primary preference) and (3) minimizing energy con-
sumption.  

Objective 
The objective is to: maximize reduction of model error. 
First, we define the gpReward, 𝑟!,&,$	 , which is the reward for 
viewing 𝑔! with command c at time t. This is the difference 
between the prior error and the measurement error. 
 
𝑟!,&,$	 =	𝑒!,$()	- 𝑚!,&	                                                          (1) 
If 𝑟!,&,$	  < 0 then taking an image with command c would 
increase model error for 𝑔!. Observations which increase er-
ror will be discarded, so 𝑟!,&,$	 has a lower bound of 0. 
 
Next, we define cmdReward(c, 𝑣',&,$) as the sum of 
gpRewards for all GP covered by sat s using command c at 
time t. This is the aggregate reward for including command 
c in the plan. 
 cmdReward(c, 𝑣',&,$)  = Σ! 	𝑟!,&,$	 	

	∀ 𝑔! ∈ 𝑣',&,$ ∀ 𝑐	 ∈ 𝑑$'   (2) 
 
Our objective is to maximize the sum of all cmdRewards, 
for all commands in the plan. Let P = a plan consisting of a 
list of commands, and 𝑐" be the n'th command in plan P.  
 
maximize Σ&!	∈	+		𝑐𝑚𝑑𝑅𝑒𝑤𝑎𝑟𝑑(𝑐")			                              (3) 
Equation 3 maximizes the sum of all gpRewards for all GP 
covered by all commands in the plan.  The quantity being 
maximized is the plan score which we will use later when 
describing the search procedure: 
planScore = Σ&!	∈	+		𝑐𝑚𝑑𝑅𝑒𝑤𝑎𝑟𝑑(𝑐")		                           (4) 
 
Search Space and Procedure 
The search space is a node tree. Each node is a plan consist-
ing of a (possibly partial) set of variable assignments (cmd 
choices). Each branch/edge in the tree represents a variable 
assignment. Each node contains: 
• Set of decision variables 𝑥$', each representing the com-

mand choice for sat s at time t. ∀	𝒕	 ∈ 	𝑇	',   𝑇	'= {All 
GP access times (TP) for sat s} 

• Set of variable domains 𝑑$' representing command 
choices for each 𝑥$',			∀	𝒕	 ∈ 		{access times}. The do-
main of choices for 𝑥$' is the set of all command options 
for sat s at time t.  

Node state: Each node also contains a ‘state’ property, 
which tracks the energy consumption and battery charge and 
plan score at each plan step (after each command choice). 
The node state tracks the effects of each planner choice and 
is represented as a Python dictionary tracking state fluents 
such the current battery charge level.  
 
 
 
 

Figure 4: Decision variables for the root node 
 
Figure 4 shows and example of the decision variables for the 
root node. 𝑥$' = the command for sat s at time t. The root 
node is initialized with variables for every TP for every 

Root Node variables: 
𝑥!𝟏, 𝑥#𝟏, 𝑥$𝟏, 𝑥$$, 𝑥%𝟏, 𝑥%$, 𝑥&,$𝑥($, 𝑥)𝟏, ... 
 



 

satellite. The root node variables are sorted chronologically, 
so all variables for time N precede all variables for times 
greater than N. There are variables only for the times when 
the satellite as access to a GP. This example shows there are 
variables for only sat 1 at times 0, 1, and 6. There are varia-
bles for both satellites at times 2 and 3, and variables for 
only sat 2 at times 4 and 5. This is because those are the only 
times when the given sat has TP choices. We may choose to 
solve the variables in any order, but our default is to solve 
them in chronological order.  
 
1. PlanIt() 
2.   rootNode.vars = {𝑥*+} 
3.   openNodes = {rootNode} 
4.   while openNodes: 

        // choose plans to expand (beamWidth # of plans) 
5.     beam = chooseNodes(openNodes, beamWidth) 
6.     for node in beam:  
7.       var  = chooseVariable(node)  // choose 𝑥*+ 
8.       val  = chooseValue(var)      // choose cmd      
9.       child = createChildNode(node, var, val) 

      //  propagateChoices enforces constraints and 
             //  update states properties for energy and reward  

10.       child.propagateChoices(var,val)  
11.       if child.isFeasible()// verify energy is OK  
12.       then openNodes.add(child) 

 
Figure 5: Search Procedure 

 
Figure 5 shows the search procedure PlanIt(). The root node 
is initialized with variables for all TP for all satellites as 
shown in figure 4. The algorithm iteratively chooses a set of 
nodes to expand, called the beam. The number of nodes in 
that set is the beamWidth. Each node in the beam is then 
expanded, which means choosing a variable from that node, 
and then choosing a value for that variable.  
 PlanIt() is a generic search engine which may be used for 
different planning problems. The search engine itself knows 
nothing about GP, TP, model error or slew constraints. All 
domain specific logic is encapsulated in planner callbacks 
provided by the applications. The methods chooseNodes, 
chooseVariable, chooseValue, propagateChoices, 
and isFeasible (lines 5, 7, 8,10 and 11) use those domain 
specific callback methods which contain all knowledge 
about GP and TP.  
 Choosing a node corresponds to choosing a plan (the 
command sequence defined by the path from that node to 
the root). Choosing a variable corresponds to choosing a 
<sat, TP> pair and choosing the value corresponds to choos-
ing a command for that sat at time TP. We have used this 
same system to schedule data downlinks by providing a dif-
ferent set of callbacks for these methods. Future work will 
integrate the observation and downlink planners.  
 chooseNodes (line 5) implements our objective func-
tion using a beam search.  On each iteration, the algorithm 
selects the N best nodes to expand, where N is the beam 
width and best is defined by the node's plan score. Each node 
has a plan score (equation 4) defined as the sum of error 

reduction for all the GP covered by all the commands in the 
plan up to that point, for all satellites. All open nodes are 
sorted in decreasing order of plan score.  

 chooseVariable (line 7) chooses variables in chron-
ological TP order, but may be changed in the future.  
 chooseValue (line 8) implements the local heuristics 
which sort choices at each choice point (TP). The choices 
are instrument commands which may be sorted in various 
ways. We have explored a range of local heuristics, includ-
ing the following discussed in this paper: 
 errReduction (prior error - measurement error): com-
mands are sorted in decreasing order of the sum of error re-
duction for all GP covered by the command. This is the local 
equivalent of the global objective heuristic, ranking com-
mand choices by the same gpReward metric that the global 
objective uses in chooseNodes (equation 1). In this local 
heuristic version command choices for each variable, 𝑥$', are 
sorted in decreasing order of the sum of reduction in error 
for all GP covered by the command. This is the gpReward, 
𝑟!,&,$	 , shown in equation 1 and the choices are sorted in order 
of decreasing cmdReward (equation 2). This shows how we 
integrate the TP and GP search spaces. 
 gpRankedChoice (qualitative measurement error): This is 
a GP-centric heuristic based on each GP's preference of the 
best way to view it.  Command choices for each TP are 
sorted based on a form of ranked choice voting in the GP 
space. Command choices are ranked by the collective set of 
GP covered by all commands choices for that TP.   
 First, each GP ranks all its viewing choices across all TP 
and all satellites, based on measurement error. Rank 1 means 
the best viewing option (minimum error), and rank 2 is sec-
ond best, etc. Let 𝐶!= the list of all commands for viewing 
GP 𝑔!, sorted in order of increasing measurement error 𝑚!,&	, 
so the command with the least measurement error is first. 
For this heuristic we redefine gpReward, 𝑟!,&,$	 . Instead of 
equation 1:  𝑟!,&,$	 =	 (|𝐶!|	- c's position in 𝐶!) / |𝐶!|	  
 Next, the choices for variable 𝑥$' are sorted so the com-
mands ranked highest by more GP, out of all GP  covered 
by any command at that TP, are chosen first. The choices 
are sorted in order of decreasing cmdReward (equation 2), 
the same as they were for the errReduction heuristic above, 
but now the cmdReward is based on a different gpReward 
calculation. This is another example of how we are integrat-
ing the GP search space into the TP search space.  
  gpCount (no error model): Commands are sorted in de-
creasing order of the # of GP covered by each command. 
This is a greedy heuristic which collects as many GP as pos-
sible as quickly as possible without regard to model error. 
We ignore the gpReward, and redefine cmdReward(c, 𝑣',&,$) 
to be the # of GP covered by command c (instead of equation 
2).  At each TP, commands c are sorted in order of decreas-
ing cmdReward(c, 𝑣',&,$) = 	|𝑣',&,$|	= the number of GP visi-
ble to sat s using command c at time t. This provides an up-
per bound on # of GP covered and lower bound on our ob-
jective score (plan score). 



 
 

 
Constraint handlers: Constraints are enforced through 
choice propagation  which uses forward checking (Russell 
and Norvig 2021) after each choice to remove any future 
variables which are inconsistent with it. For example, the 3-
second image lock is implemented as follows: when a deci-
sion is made to start taking an image at tick 10, then all 
choices for timepoints 11 and 12 are removed so nothing 
else will be scheduled during that 3-second hold.  Choice 
propagation is also used to enforce constraints for slew time 
and duplicate observations. All constraints are implemented 
by the propagateChoices method (line 10).  
 Constraints are applied only to variables for the same sat-
ellite, except for the duplicate observation constraint which 
is applied to all variables for all satellites. This means the 
image lock constraint for satellite 1, requires that only satel-
lite 1 hold its position. On the other hand, if satellite 1 ob-
serves GP 10, then satellite 2 is constrained to not observe 
GP 10.  The following choice propagation example shows 
how it is used to remove duplicate GP observations from fu-
ture variables.  
 
 
 
 
 
 
 
 
 
Figure 6 shows two examples of choice propagation to en-
force the no duplicates constraint. Case (a) shows the com-
mand choices for 𝑥,-) , satellite 1 at TP 25.  After GP 123 is 
observed, it is removed from the list of GP covered for every 
choice for all future variables.  In this example, that was the 
only GP covered by command choice L.32, so the command 
L.32 is removed from the domain of choices for variable 
𝑥,-) . Case (b) shows that when the last choice is removed 
from a variable's domain (producing an empty domain), then 
the variable is removed from the node. In this case, after GP 
253 is observed, it's removed from the GP list for command 
P.42, leaving an empty GP list. The command P.42 is re-
moved from the domain for variable 𝑥./) , leaving an empty 
variable domain, so 𝑥./)  is removed from the list of open 
variables. This is different from a pure CSP system where 
all variables must receive a valid assignment, and a variable 
with an empty domain indicates infeasibility.  In our case, 
choice propagation removes variables which have no valid 
assignments based on the path dependencies of the current 
plan (node). Choice propagation also updates the energy 
model and the plan score for each node. 
  Multiple-pass planning: We group the full set of GP into 
priority cohorts based on model error. First priority are rainy 
GP, where there has been recent or predicted rain. Second 
priority are GP where there has not been recent or predicted 
rain. Both of those groups exclude GP where the ground has 

already been saturated, which are a third priority. On the 
first pass, the planner schedules as many first-priority 
(rainy) GP as can fit in the 6-hour plan horizon, then it 'back-
fills' the gaps in that plan with non-rainy GP.  
 This multi-pass approach brings complications. When 
filling a gap, the planner must enforce the slew constraints 
to splice the new observations into the existing plan. It must 
slew from the last high-priority viewing angle at the start of 
the gap and it must slew to the next planned viewing angle 
at the end of the gap. Additionally, we cannot propagate the 
state of battery charge forward in time, because the planner 
is filling in parts of the plan (gaps) in non-chronological or-
der.  

Experiment Results 
Preliminary experiment results are presented below for our 
example with 3 satellites and a 6-hour planning horizon. All 
GP are initialized with model error values provided by the 
Soil Moisture Model. The initial error/GP is 0.0161 (1.61 
%) averaged over the entire set of 1.66 million GP. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: errReduction has best avg err/GP 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: gpCount covers the most GP 
 

 Figures 7, 8 and 9 show preliminary experiment results 
comparing three local heuristics, which are variants of the 
chooseValue method (line 8). Figure 7 shows the average 
error % per observed GP, figure 8 shows the total # of ob-
served GP, and figure 9 shows how the # of search nodes 
created scales relative to beam width. We ran the same ex-
periments with beamwidths = 1, 3 and 5, denoted as b in the 
charts. 

(a)   [𝑥,-) : {L.32: [123],  
                   L.33: [436349, 436350, 436351],  
                   P.32: [436350, 436351, 436352]] 
 
(b)  [𝑥%)# : {P.42: [253]}] 
 

 Figure 6: Choice propagation examples 
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Figure 9:  errReduction & DFS scale linearly with b 
 
The three heuristics (previously described) are errReduc-
tion, gpRankedChoice and gpCount.  The group marked 
DFS on the right of each chart are results when we replace 
the objective function (equation 3) with a simple depth first 
search, by changing the definition of the global heuristic 
chooseNodes (line 5). Instead of sorting nodes by error 
reduction, the list of open nodes is treated as a LIFO stack. 
The last node added is the first expanded. Comparing DFS 
results with the others shows how the global heuristic affects 
the results. The DFS tests used a beamwidth of 5. This 
means on each call to chooseNodes, the 5 most recently 
added children would be selected.  
 Analysis: These initial results clearly show the inherent 
trade between quantity and quality, specifically maximizing 
the # of GP observed vs. maximizing the reduction in model 
error. Figure 7 shows errReduction always outperforms the 
others in quality (reducing error) while figure 8 shows 
gpCount is best for quantity (observing more GP). When us-
ing the global objective heuristic (vs. DFS), results generally 
improve with increased beamwidth.  
 Figure 9 shows that the # of nodes scales linearly with b 
only for errReduction (except for DFS group). The poor 
scaling for gpRankedChoice and gpCount is evidence of 
tension between the local heuristic (chooseValue) and the 
global heuristics (chooseNodes), which are conflicting. 
With errReduction, the local and global heuristics use the 
same gpReward metric (equation 1), so the heuristics don't 
conflict. With the other heuristics, more nodes are created 
because those local heuristics makes choices based on a dif-
ferent gpReward metric, which don't align with the global 
objective.  The global objective acts like a governor, and re-
peatedly backtracks to correct the diversion. The global ob-
jective to maximize error reduction clamps down on the 
other heuristics from chasing their local preferences. Note 
that all heuristics in the DFS group scaled linearly with 
beamwidth because there's no conflict between the global 
and local heuristics, so the local heuristic is untethered from 
the global heuristic's veto power. 
 Other observations (not shown in charts) include: All 
mixes of heuristic and beamwidth take roughly the same 

number of images (about 5075). This corresponds to the # 
of commands in the plan and corresponds to the makespan.  
We also observed that beam width has minimal effect on the 
solution with DFS because without the global heuristic, a 
beamwidth of 1 and a beamwidth of 5 produce similar lo-
cally greedy solutions. More nodes are generated with larger 
beam width, but not exponentially more. 
 
Future Work: 
 Global heuristics and search strategies: We plan to test 
variations of the chooseNode method beyond the objec-
tive-based and depth first methods used in this paper includ-
ing a branch-and-bound algorithm (Dechter 2003) which 
prunes suboptimal nodes. For example, if two nodes have 
similar plan scores but one got there earlier in the plan hori-
zon (and thus has more time remaining in the horizon to 
make more observations), then chooseNodes may prune 
the suboptimal node and backtrack to the best previous 
node. We may also modify chooseNodes to implement 
Monte Carlo rollouts or other randomized search methods. 
 More local heuristics: We are exploring other variants for 
our local heuristics.   
 GP-choice search space: We plan to explore planning ob-
servations based on GP choices as the primary search space 
rather than using TP choices as our search space.  Intuitively 
this means solving the most important GP first rather than 
solving each TP in chronological order. This can be imple-
mented by changing the chooseVariable method to select 
variables which cover  GP with the highest error in non-
chronological order.  
 MILP formulation: We plan to revisit an MILP formula-
tion, with the increased insight and better understanding of 
the problem gained by developing this COP solution. 
 Downlink planning: We previously used this same COP 
system to implement a downlink planner. That planner 
tracked two priority levels of collected data and scheduled 
timeslots on ground stations to download the data in priority 
order. It used the same algorithm as Figure 5 but was pro-
vided with different callbacks for chooseVariable and 
chooseValue. We plan to integrate that downlink planner 
with the observation planner presented here.  

Constellation and scenario extensions: We will add more 
satellites, and more instruments to each satellite (L band ra-
diometer, P band reflectometer, L band reflectometer) to im-
prove soil moisture retrievals. These instruments will add 
additional choices to optimize energy consumption, albeit 
an order of magnitude less than the radar.  
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