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Abstract—The majority of the soil moisture estimation algo-
rithms using radars in the literature are for retrievals using a
single instrument or not optimized for retrievals using multiple
radars. A method for retrieving soil moisture using polarimetric
radars at multiple frequencies is presented. The method uses a
forward model and a hybrid local and global optimizer to retrieve
soil moisture. Monte Carlo simulations of soil moisture retrieval
using a maximum of four radars with different frequencies and
incidence angles have been performed to assess the performance
of the algorithm for various vegetation types and realistic
instrument noise models. The simulation results show a mean
unbiased root mean square error (ubRMSE) of less than 0.01
m3 m−3, and a mean bias less than 0.005 m3 m−3. The mean
ubRMSE and bias values were quite small under the assumption
that vegetation properties and surface roughness are known.

Index Terms—soil moisture, inverse-problem, remote-sensing,
radar

I. INTRODUCTION

In recent decades, multiple missions have been launched
with the goal of estimating soil moisture on a regional and
global scale. These include the National Aeronautics and
Space Administration (NASA) Soil Moisture Active Passive
(SMAP) mission [1], the European Space Agency (ESA) Soil
Moisture and Ocean Salinity (SMOS) mission [2], and the Air-
borne Microwave Observatory of Subcanopy and Subsurface
(AirMOSS) mission [3] among others. Furthermore, numerous
algorithms have been developed to estimate soil moisture
using microwave signals [4]–[7]. The majority of algorithms
were designed to retrieve soil moisture value from a single
instrument.

This paper focuses on retrieving surface soil moisture value
from normalized radar cross section (NRCS) of multiple active
radars. This work supports the development of future Earth
observing systems, where multiple taskable space assets may
be available for observing ground locations of interest based
on science criteria, such as reducing the uncertainty of soil
moisture knowledge at those particular ground points [8].
In our method, the soil moisture value is retrieved jointly
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from the observations of all available instruments. The method
is investigated for different vegetated terrains. The retrieval
algorithm uses a multi-directional hybrid local and global
optimization method based on simulated annealing and a
forward scattering model.

The rest of the paper is organized as follows: Section II
introduces the retrieval algorithm. The simulations setup is
provided in Section III. The results and the discussions are
presented in Section IV and Section V, respectively. Finally,
the conclusion of this paper is given in Section VI.

II. RETRIEVAL ALGORITHM

The retrieval algorithm consists of an optimizer and a
forward model. The multi-directional hybrid local and global
optimization method based on simulated annealing [9] was
used as an optimizer. This method has been proven to be
faster than the standard simulated annealing in radar remote
sensing applications [10]. The cost function integrates the
normalized difference between the measured NRCS and the
NRCS calculated by the forward model for all instruments
and all polarizations. It is expressed mathematically as

fcost =
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where σ0
measured is the NRCS measured by the radar or simu-

lated, σ0
fwd is the NRCS calculated by the forward model, and

N is the number of instruments. The quantity Pi is the number
of measurements from instrument i. In our paper, this number
corresponds to the number of polarizations. The parameter
W is the weight of the measurement and is discussed in
Section III.

The forward model is the Durden et al. radar backscatter-
ing model [11], but uses the soil dielectric constant model
developed by Mironov et al. [12].

III. SIMULATION SETUP

Monte Carlo simulations were used to assess the retrieval
algorithm performance. A maximum of four radars were



TABLE I
P-BAND RADAR OPERATION MODES

Operation mode θi NESZ [dB] Nlook
1 35° −41.45 4213
2 45° −38.29 5195
3 55° −35.38 6018

TABLE II
L-BAND RADAR OPERATION MODES

Operation mode θi NESZ [dB] Nlook
1 35° −40.69 411
2 45° −37.29 507
3 55° −32.87 587

assumed to be available in the simulations; two were P-band,
and the other two were L-band. All of the radars are quad-
pol synthetic aperture radar (SAR) and have three operation
modes. The center frequency, fc, of the P-band and L-band
radars are 435MHz and 1.28GHz, respectively. The swath-
width of the P-band radar was 50 km, and the swath-width
of the L-band radar was 25 km. Each operation mode has a
specific incidence angle, which gives a specific value of Noise
equivalent sigma zero (NESZ) and a number of looks per
km2, Nlook. The specifications of operating modes are given
in Table I and Table II for the P-band and L-band radars,
respectively. It is worth noting that the selection of radars’
specifications is part of a novel design strategy for the next
generation of Earth monitoring systems, whose description is
outside the scope of this paper. The mapping between the radar
specifications to the measurements metrics (NESZ, Nlook) is
obtained with the aid of the InstruPy Python package [8], [13].
This Python package contains models of various instruments
(SAR, passive optical, radiometer) which maps instrument
specifications to measurements metrics.

Five sites with distinct vegetation types have been studied.
Table III shows the sites’ names, vegetation types, and the
International Geosphere-Biosphere Programme (IGBP) class
of each vegetation type. The study was carried out in the
wet period with soil moisture ranging between 0.16m3 m−3

and 0.3m3 m−3. The vegetation parameters of these vegetated
terrains used in the forward model were presented in [4], [14],
[15].

The simulated NRCS values were generated by the forward
model with the addition of speckle noise [19] and system
noise. It is expressed mathematically as

σ0
sim = σ0

forward

(
1 +

0.523√
Nlook

w1

)
+ κpw2 (2)

TABLE III
VEGETATION TYPES OF SIMULATION

Site name Vegetation type IGBP number
Metolius [16] Evergreen needleleaf forest 1
Walnut Gulch [17] Open shrublands 7
Tonzi Ranch [17] Woody savannas 8
Yanco [18] Croplands 12
Las Cruces [16] Barren 16

where κp is the value of NESZ. Both w1 and w2 are in-
dependent white Gaussian random variables with zero mean
and unity variance. The NRCS values of vv, hh, and vh
polarization were used in the retrieval of soil moisture for
all vegetation types except Barren. As the NRCS of cross
polarization calculated by the forward model is zero, only
the NRCS values of vv and hh polarization were used in the
retrieval for the Barren case. For the quad-pol retrievals, the
weighting W for the co-pol NRCS was 2

5 , and 1
5 for the cross-

pol NRCS. The co-pol measurements have a higher weight
than the cross-pol measurement. For the case of retrievals
using only the co-pol measurements, equal weight was given
to both vv and hh polarization. Before the joint retrieval, the
NRCS values with the same instrument type and incidence
angle are averaged. Then, only the averaged NRCS value is
used in the retrieval.

The simulations were done with ten Monte Carlo trials
for the combinations of all unique operating modes. Each
combination included at most the four radars in this study.
Thus, soil moisture retrieval from a single radar or two radars
up to four radars was considered. The total number of unique
mode combinations for each vegetation type was 100. This
is the number of combinatorics for all feasible variations of
operation modes of the four instruments in this study. For each
radar type, there are ten feasible combinations of operation
modes. These include one of the radars is not active, or both
are not active.

For comparison, a Monte Carlo simulation of soil moisture
value retrieval using the SMAP radar specifications has been
performed. Only the NRCS values of vv and hh polarization
were used in the retrievals. The center frequency of SMAP
radar is 1.257GHz, the incidence angle is 40°, the Nlook is
10, the NESZ is −30 dB, and the swath-width is 100 km.

IV. RESULTS

The Monte Carlo simulations of soil moisture value re-
trievals from multiple instruments with multiple observations
have been done for all of the unique mode combinations of
the four instruments considered in this study. In addition,
for the same vegetation parameters and soil moisture values,
a Monte Carlo simulation using SMAP radar specifications
has been done for comparison. The unbiased root mean
square error (ubRMSE) and the bias were calculated for each
mode combination and vegetation type using the definitions
presented in [20]. The histograms of the ubRMSE and the
bias for each vegetation type are shown in fig.1 and fig.2,
respectively. The mean and the standard deviation values of
ubRMSE and bias for each vegetation type are given in
Table IV. Also, the performance of the retrievals using the
SMAP radar specifications is provided in Table IV.

The performance of soil moisture retrievals using the pro-
posed instruments was superior to the performance of retrieval
using the SMAP radar specifications for all vegetation types.
The mean values of the ubRMSE and the bias were quite small
for all vegetation types. The difference in mean value between
the various vegetation types, in this study, was insignificant.



TABLE IV
SOIL MOISTURE RETRIEVAL PERFORMANCE FOR THE 100 COMBINATION

OF OPERATION MODES

IGBP number ubRMSE [m3 m−3] Bias [m3 m−3]
Mean std SMAP Mean std SMAP

1 0.006 0.011 0.030 0.003 0.006 0.021
7 0.006 0.009 0.054 0.003 0.005 0.049
8 0.005 0.017 0.013 0.003 0.010 0.018
12 0.005 0.011 0.026 0.003 0.007 0.031
16 0.004 0.006 0.013 0.002 0.003 0.006

0.00 0.01 0.02 0.03
ubRMSE [m3/m3]

0

20

40

60

80

Co
un

ts

Open shrublands
Woody savannas
Evergreen needleleaf
Barren
Croplands

Fig. 1. Histogram of ubRMSE of all the operating mode combinations. Note
that the bars are narrow for clarity; the bar of each vegetation type should
extend to the adjacent bars of the rest of the vegetation types.

However, there was a small variation in the standard deviation
values. The retrievals from Woody savannas vegetation cover
had the highest standard deviation of both ubRMSE and bias
values. On the other hand, the retrieval from Barren vegetation
type had the highest performance among the studied vegetation
types.

Fig. 3 shows the mean ubRMSE values for the number
of observations/instruments used in the retrieval. The use of
two observations improved the retrieval performance for open
shrublands vegetation type. The performance of the rest of the
vegetation types in this study had a small change. We consider,
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Fig. 2. Histogram of Bias of all the operating mode combinations. Note that
the bars are narrow for clarity; the bar of each vegetation type should extend
to the adjacent bars of the rest of the vegetation types.
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Fig. 3. Averaged ubRMSE values grouped to the number of instruments used
in the retrieval.

P-band L-band Both0.0000

0.0025

0.0050

0.0075

0.0100

ub
RM

SE
 [m

3 /m
3 ]

Open shrublands
Woody savannas

Evergreen needleleaf
Barren

Croplands

Fig. 4. Averaged ubRMSE values for retrievals from the P-band radars only,
L-band radars only, and both.

in this study, a value of ubRMSE less than 0.005m3 m−3

insignificant, as this is negligible for practical purposes.
The averaged ubRMSE values for the retrievals grouped into

retrievals using the P-band radar only, the L-band radar only,
and both radars are presented in fig. 4. The figure shows that
using only a P-band radar gives similar or better performance
compared to using only an L-band radar in the retrieval of soil
moisture value.

V. DISCUSSION

The Monte Carlo simulations showed that the proposed
method of retrieving soil moisture using multiple instruments
was able to retrieve soil moisture with high accuracy, as shown
in Table IV. The proposed system of at most four radars
had a higher quality of performance compared to the SMAP
radar. This includes retrieving soil moisture using only a single
instrument. For all vegetation types in this study, over 80%
of the modes combinations had an ubRMSE value less than
or equal 0.01m3 m−3, as illustrated in fig. 1. This is a very
low ubRMSE value, specially for wet regions.

The use of multiple independent observations improved the
retrievals for some vegetation types. However, there was no
noticeable difference between using two or more than two



observations in the retrieval. This was expected as soil mois-
ture was the only unknown. The other surface and vegetation
parameters were assumed to be known.

The retrievals using only the P-band radars had higher or
similar performance compared to the retrievals using only the
L-band radars. This was expected as P-band is less sensitive to
vegetation and had higher measurement metrics, as shown in
Table I. The measurements from the L-band radar is expected
to improve the retrievals in the case of retrieving vegetation
parameters with the soil moisture value, or when the P-band
radar is not available.

The superior performance of soil moisture retrieval using the
proposed system can be attributed to system specifications and
the number of independent measurements. The performance
of the retrievals exceeded the requirements of most existing
systems and applications. In this study, only soil moisture
value was retrieved. The other geophysical parameters, in-
cluding surface roughness and vegetation water content, are
assumed to be known. However, these other parameters are
often unknown, or the accuracy with which they are known is
low. The proposed system with this retrieval algorithm can be
used in the future to estimate these parameters along with soil
moisture, given that there are multiple observations assumed
to be available.

The expected performance of each combination of operation
modes can be used as a pre-processing step in a satellite
constellation planner to inform the planner to select the
optimum operation modes for the satellites [21].

VI. CONCLUSION

A soil moisture retrieval algorithm using multiple radar
instruments, each with multiple polarizations, has been pre-
sented in this paper. Monte Carlo simulations of at most four
instruments with multi-operation modes have been performed
for various vegetation types. Both the speckle noise and the
system noise were considered in the simulations.

The soil moisture retrieval results from the proposed system
showed superior performance compared to retrievals using
SMAP radar specifications. The mean ubRMSE and bias
values were less than 0.01m3 m−3 and 0.005m3 m−3, re-
spectively, and a standard deviation of less than 0.02m3 m−3,
which are very small. We further note that resolution scale
of the multi-instrument system vs. that of SMAP was not
considered as a performance metric.
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