

Rich Levinson^{1,2} Samantha Neimoeller¹ Sreeja Nag^{1,3} Vinay Ravindra^{1,3}

{rich.levinson, samantha.c.niemoeller, sreeja.nag, vinay.ravindra} @nasa.gov

¹NASA Ames Research Center

 ² KBR Wyle Services, LLC
 ³ Bay Area Environmental Research Institute Moffett Field, CA 94035

Collaborators:

Mahta Moghaddam (University of Southern California) Daniel Selva (Texas A&M University)

Funded by: NASA Earth Sciences Technology Office (ESTO)

Background and Motivation

Soil Moisture Prediction

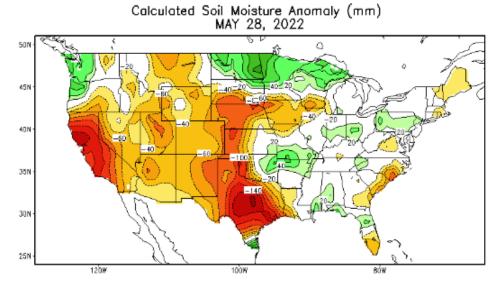
• Soil moisture is a key indicator for predicting floods, mudslides, wildfires, other phenomena

Problem:

- We have initial solution for improving soil moisture prediction
- Our Constraint Processing planner follows a (NOAA/National Weather Service website) narrow beam of heuristically guided trajectories through a **huge** search space
- We don't know how optimal our heuristic solution is

Research Questions:

- How close to optimal is our heuristic solution?
- Can we model our constraints in Mixed Integer Linear Programming (MILP)?
- How long would it take MILP to prove optimality on our 6-hour plan horizon?

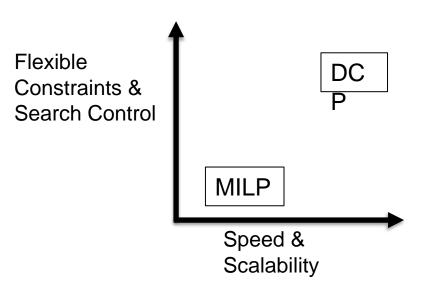


Dynamic Constraint Programming (DCP)

- Suboptimal but Fast
- Constraints enforced "on-demand"
- Variables dynamically eliminated by constraint handlers

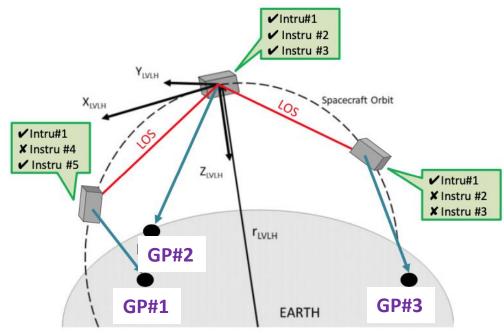
Mixed Integer Linear Programming (MILP)

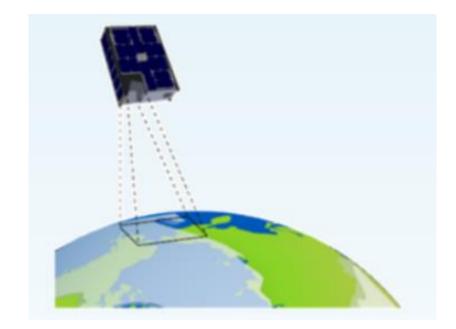
- Optimal but Slow
- Less flexible constraint modeling
- Quantitative declarative constraints
- Scalability challenges



D-SHIELD:

Distributed Spacecraft w/ Heuristic Intelligence to Enable Logistical Decisions





- Multiple satellites w/ multiple instruments to observe *Ground Positions* (GP)
- Each satellite has 2 different sensors & can point at 61 different angles
- Each observation covers multiple GP (9 km x 9 km tile)
- For each satellite:

Assign a sensor command for every Time Point (TP) when it can see any GP

Constellation-wide constraint

• Duplicate Observations:

No duplicate GP observations (across all satellites)

Satellite-level mutex constraints (only do one thing at a time)

- Image Lock hold viewing angle for 3 seconds per observation
- Maneuver constraints slew time for changing view angle

Planner Input: GP Access Times & Command Choices

Search space *for each satellite*:

Timepoint (TP)	Command Choices	Ground Positions (GP) covered by command
10	L.32 (L-band, angle 32)	25, 26, 27
	P.32 (P-band, angle 32)	24, <mark>25, 26, 27</mark> , 28
	P.34 (P-band, angle 34)	36, 38, 40, 47, 49

- Access times (TP)
- Command choices (sensor & view angle) for each access time (TP)
- List of GP covered by each command

Planner Input: Prediction and Measurement Errors

Soil Moisture Prediction Error

Ground Position (GP)	Timepoint (TP)	Prediction Error
15	100	0.02
	500	0.23

Measurement Error

Sensor Command	Ground Cover	Measurement Error	
L.48			
	Forest	0.035	
	Shrubs	0.025	

Error increases with time and rain

Error *decreases* with "good" observation (measurement error < pred. error)

Planner Input: Prediction and Measurement Errors

Soil Moisture Prediction Error

Timepoint (TP)	Prediction Error	
100	0.02	
500	0.23	
	(TP)	100 0.02

Measurement Error

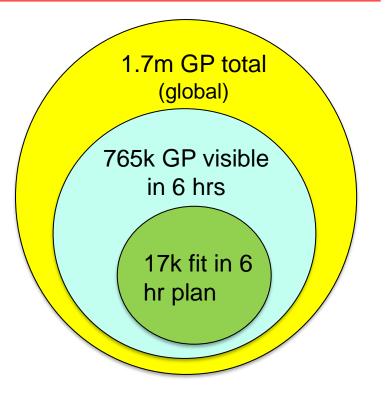
Sensor Command	Ground Cover	Measurement Error	
L.48			
	Forest	0.035	
	Shrubs	0.025	
			_

Goal: Observe GP having most prediction error, using measurements with least error

Search Space Combinatorics

Scenario: 3 satellites, 6-hour plan horizon:

- ~8700 Time Points (TP) when GP are visible
- ~55 command choices/TP (max: ~150 choices/TP)



• # nodes in search space $\left(\frac{\# \ cmd \ choices}{TP}\right)^{\#TP} = 55^{8700} = "Infinity"$

Different Planning Models

Dynamic Constraint Processing (Levinson et al., IWPSS '21)

Qualitative Decision Variables:

- $x_{s,t}$ = the command choice for sat s at time t. $\forall t \in \{A \mid TP \text{ when sat s can see any GP} \}$ $x_{1,25} \in \{L.32, L.34, P.33, P.34\}$
- Constraints are procedural (Python code) and called on-demand after each planner choice

MILP: *Binary* Decision Variables

- $x_{s,c,t} = 1 \leftrightarrow \text{sat } s \text{ executes command } c \text{ at time } t$
- $y_{g,s,c,t} = 1 \leftrightarrow \text{GP } g$ is observed by sat *s* with command *c* at time *t*
- Constraints are *quantitative*, *declarative*, *and pre-enumerated*

Apples-to-Apples comparison:

• Requires identical inputs, model constraints, and metrics

 $x_{s,c,t} \in \{0,1\}$ $y_{g,s,c,t} \in \{0,1\}$

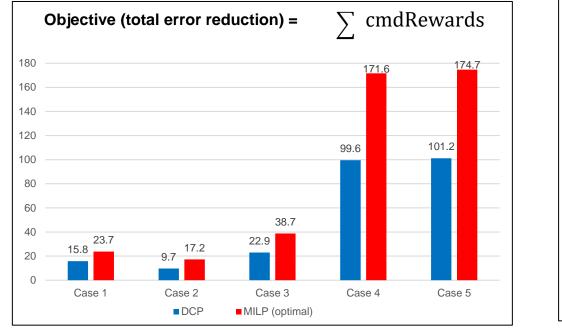
$$\begin{array}{c} \text{maximize } \Sigma \quad \text{commandReward}(cmd) \\ \forall \quad cmd \in plan P \end{array}$$

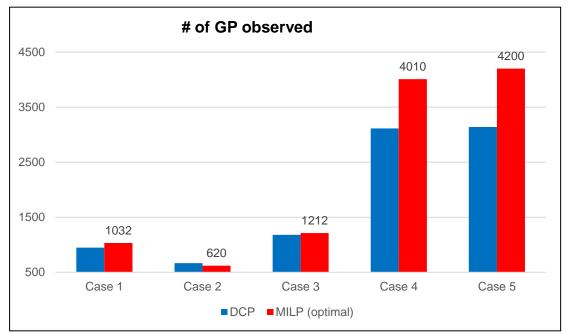
Plan:			
TP	Cmd	Observed GP	Command Reward
10	L.32	25, 26, 27	→ 0.25
20	P.21	33,35,39,40	→ 0.32
30	p.25	50,21	→ 0.20
object	ive: \sum	0.77	

commandReward (s, c, t)= reward for sat s executing cmd c at time t $= \sum gpReward(g,c,t)$ $\forall GP g \in \{GP \text{ visible by sat s using cmd c at time t}\}$

gpReward(g,c,t) = reward for viewing GP g with command c at time t= $e_{g,t} - m_{c,b}$ where $e_{g,t} = prediction$ error for g at time t $m_{c,b} = measurement$ error for command c in biome b (forest, shrub)

Comparison: Science Value

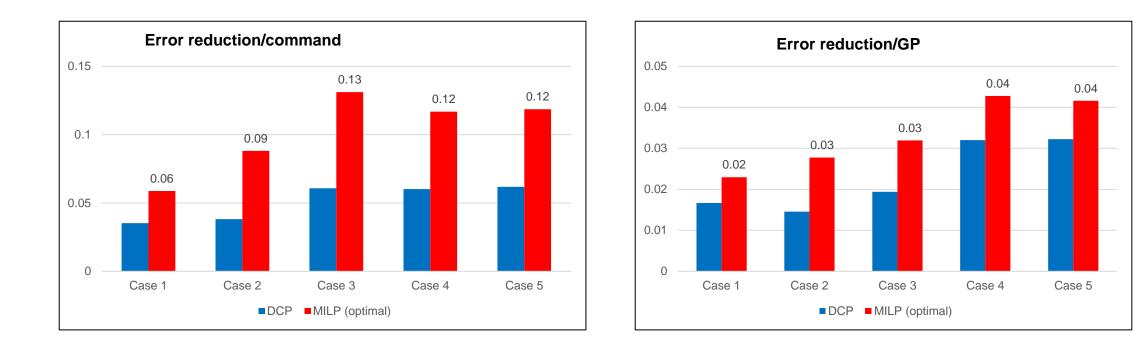




6 test cases with increasing plan horizons and complexity

- Cases 1 5: DCP achieves ~ 60 % optimal
- Case 6: Unsolvable by MILP in 50 hour time limit, but DCP solves in 28 mins

Comparison: Efficiency

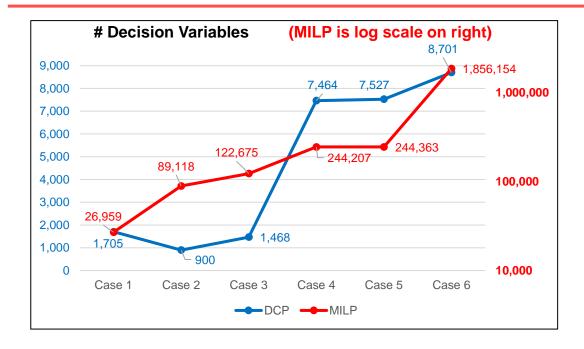


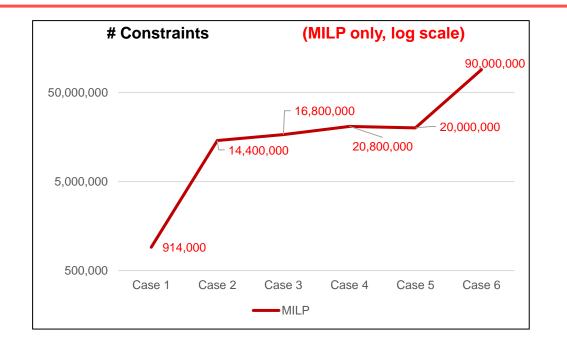
• MILP is always more efficient with higher objective rewards per command and per GP

MILP plans always has fewer commands (makespan):

Less slewing & energy cost

Comparison: Model Size





DCP: Scales linearly with # of timepoints

- # variables = # Timepoints in plan horizon
- # constraints is N/A because they are instantiated on demand

MILP: Always requires many more variables and constraints

- $\# \text{ vars} = \Sigma_{TP} \# commands(TP) + (\Sigma_{TP} \# commands(TP) * \# GP)$
- # constraints ∝ commands within 25 seconds of each other (mutex deconfliction)

Conclusion

	DCP	MILP
Optimal	×	\checkmark
Plan Efficiency	×	\checkmark
Speed	\checkmark	×
Flexible Constraints	\checkmark	×
Heuristic Search Control	\checkmark	×
Model Size/ Scalability	\checkmark	×

Both methods are useful, especially when used together

- Search Control:
 - Monte Carlo Tree Search (MCTS)
 - Divide & Conquer (independent subproblems with TP gap delimiters)
- Closing the execution loop
 - Simulated satellites execute their plans with noise
- New constraints:
 - Relaxed 3-second image lock (not yet modelled in MILP)
- New domain:
 - wildfire prediction

Questions?

rich.levinson@nasa.gov

<u>video</u>

- Experiments ran on: 2020 MacBook Pro 13-inch 2.3 GHz Quad-Core Intel Core i7, 32 GB RAM.
- DCP solutions implemented in Python
- All MILP solutions used Gurobi 9.5.
- Data sets and software will be released open source

Experiment includes 6 test cases varying by:

- Plan horizon
 - 1,000 secs (~17 mins)
 - 1,800 secs (30 mins)
 - 7,200 secs (2 hours)
 - 21,600 secs (6 hours)
- Rainy or non-rainy GP cohort (rainy GP recently received rain)
- Triage heuristic
 - solve for the 15% most needy GP first
 - mitigation for MILP model size combinatoric explosion

Planner Objective: Maximize model improvement (error reduction)

Each GP: prior model error & cmd choices w/ measurement errors

Error(GP) = F(time, rain, biome type, instrument(s), view angle)

- Error increases with time and rain
- Error decreases with "good" observation (measurement error < model error)

GP	ТР	Model Error	cmd	Measurement Error	C	GP	Model Error	cmd	Measurement Error
2	27	0.08	L.41	0.14		2	0.39	P.48	0.07
	1500	0.39	P.48	0.07			0.07		

Planner Input: GP Access Times and Command Choices

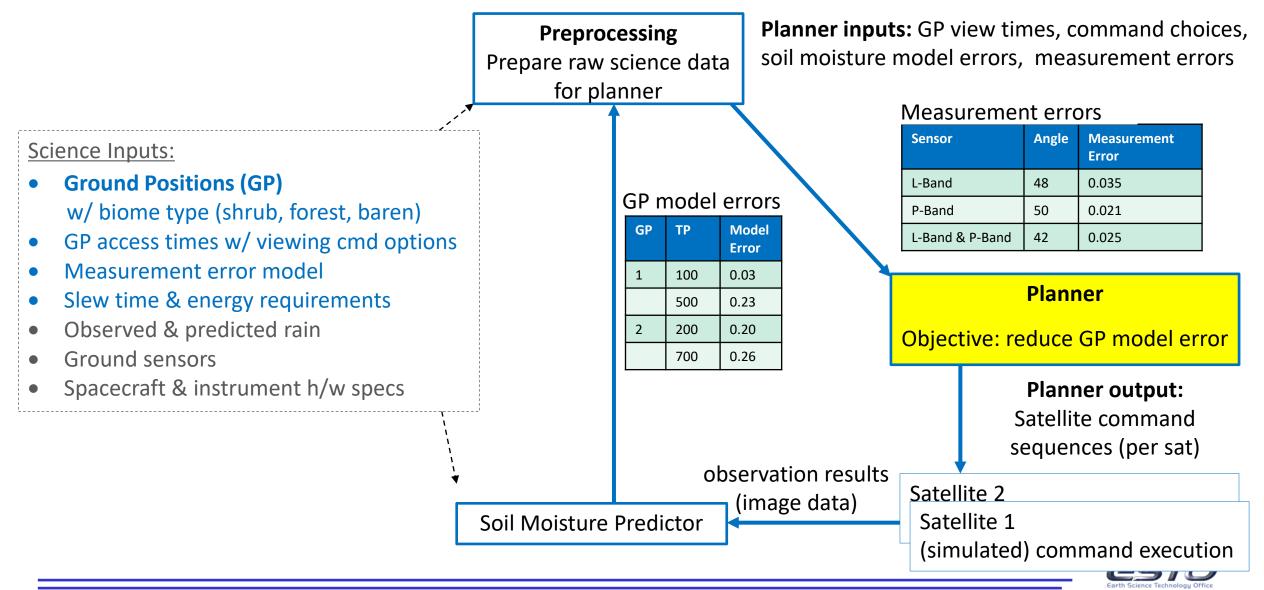
For each satellite:

Search space of access times, viewing options (commands), and covered GP

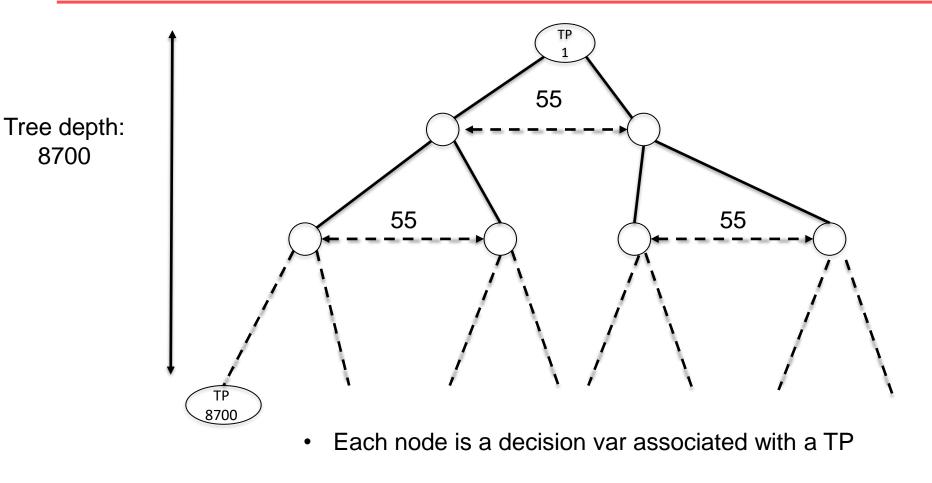
Command choice examples: L.34 = <L-band, angle 34>, P.32 = <P-band, angle 32>

TP C	Command	
<u>(time)</u>	<u>choices</u>	<u>GP covered by choice</u>
1311:	L.32:	[3165]
	L.34:	[3445, 3446]
	P.33:	[3165]
	L.32 & P.3	2: [3165]

D-SHIELD Architecture



Search Space Combinatorics



- ~55 children/node (~55 cmd choices/TP)
- Tree Depth: 8700 = # of TP

2 Binary Decision Variables

• $x_{s,c,t} = 1 \leftrightarrow \text{sat s executes command c at time t}$,

 $x_{s,c,t} \in \{0,1\}$

• $y_{g,s,c,t} = 1 \leftrightarrow GP g$ is observed by sat s executes command c at time t, $y_{g,s,c,t} \in \{0,1\}$

Duplicate GP constraint: $\Sigma_{s,c,t} \ y_{g,s,c,t} = 1$, $\forall_g \in G_{s,c,t}$

Mutex constraint (image lock and slew times block out other commands) $x_{s,c,t_1} + x_{s,c,t_2} \le 1$ $\forall_{t1,t2} : t2 - t1 \le 25$ (25 seconds = max slew time)

GP Coverage Constraint: $y_{g,s,c,t} \le x_{s,c,t}$ Tracks which GP are covered by planned commands

Objective: maximize the sum of gpRewards for all GP covered by plan: $\Sigma_g r_{g,c,t} y_{g,s,c,t}$

DCP vs. MILP: Model Size and Performance

Problem #	# Vars #Constraints		Time to best sol (* = optimal)	Time to prove optimal	Makespan (# commands in plan)
1					
MILP	26,959	914 K	* 156 s	156 s	403
DCP	1,705		7 s		449
2					
MILP	89,118	14.4 M	* 5 h	16 h	195
DCP	900		5 s		254
3					
MILP	122,675	16.8 M	* 13 h	38 h	295
DCP	1,468		8 s		377
4					
MILP	244,207	20.8 M	* 10.7 h	10.8 h	1,468
DCP	7,464		1.5 m		1,656
5					
MILP	244,363	20 M	* 24 h	45.2 h	1,473
DCP	7,527		2.5 m		1,636
6					
MILP	1,856,154	90 M	DNF	DNF	DNF
DCP	8,701		28 m		6,104

- MILP could not solve 6-hour plan horizon within 50 hours, but DCP solves it in 28 minutes.
- MILP requires many more vars and constraints
- MILP makespan is always smaller

Objective: Maximize reduction of GP model error

• **gpReward(g,c,t)** = reward for viewing GP *g* with command *c* at time *t*

 $= r_{g,c,t} = e_{g,t} - m_{c,b}$

where $e_{g,t}$ = prediction err for g at time t $m_{c,b}$ = measurement error for command c in biome type b

cmdReward(s,c,t) = sum of gpRewards for all GP observed by sat s using cmd c at time t

= $\Sigma_{\forall g \in v_{s,c,t}} r_{g,c,t}$ where $v_{s,c,t}$ = set of GP visible by sat s using cmd c at time t

• **Objective**: Maximize $\Sigma_{\forall c_n \in P} cmdReward(c_n)$

max sum of all gpRewards for all GP covered by all commands in plan P

Identical metrics for DCP/MILP comparison: Equations 1, 2 and 3

(1)

(2)

(3)

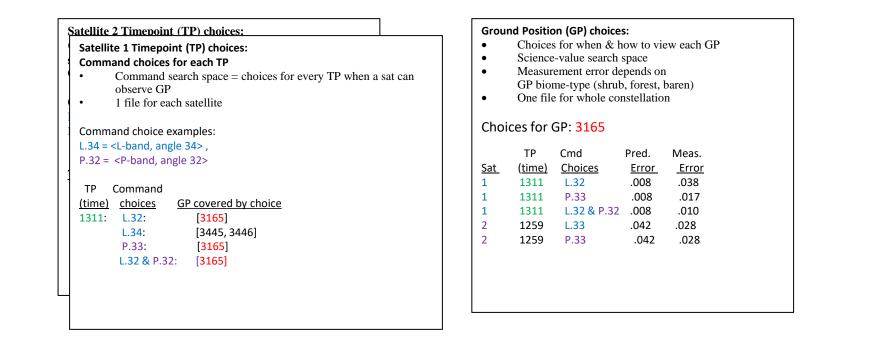
Conclusion

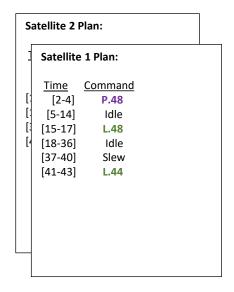
Dynamic Constraint Processing (DCP)	Mixed Integer Linear Programming (MILP)
 Pro Speed Better search control Flexible modeling Domain heuristics Explainable AI 	 Pro Provably optimal solutions Relies on 3rd party solver (benefit of robust, heavily tested tool)
 Con Suboptimal solutions Subject to local minima and path dependencies 	 Con Slow Limited model flexibility Difficult to include domain specific heuristics Solver variability Declarative model requires pre-enumerating 10's of millions of constraints in model Variable domains, constraints must be quantitative

Planner Input and Output

Inputs: TP and GP choices

Outputs: Plans for each satellite





Constraint Handlers

All constraints are enforced via choice propagation (forward consistency checking)

• Implemented by propagateChoices(variable, value)

Duplicate observation constraint handler examples:

Example 1: After observing GP 123, remove it from all future var domains (for all sats)
[x¹₂₅: {L.32: [123]</sub>,
L.33: [436349, 436350, 436351]]

Example 2: Removing GP results in empty variable domain, so remove the variable $[x_{36}^{\frac{1}{2}}: \{P.42: [253]\}]$

• Empty variable domain means no observation can be taken at that time (unlike pure CSP)

Image Lock and Slew time constraints remove variables for infeasible observation times

